Abstract

We report the use of a 2-m-long Bismuth Oxide fiber with an ultra-high nonlinearity of ~1100 W-1km-1 in a simple 2R regeneration experiment based on self phase modulation and offset filtering. Numerical simulations and experimental results confirm the suitability of this kind of fiber for 2R regeneration. An improvement in receiver sensitivity of more than 5 dB at 10 Gb/s and 2 dB at 40 Gb/s is achieved.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Watanabe and S. Takeda "All-optical noise suppression using two-stage highly-nonlinear fibre loop interferometers," Electron. Lett. 36, 52-53 (2000).
    [CrossRef]
  2. S. J. B. Yoo, "Wavelength Conversion Technologies for WDM Network Applications," J. Lightwave Technol. 14, 955-966 (1996).
    [CrossRef]
  3. N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, "Bismuth-based optical fiber with nonlinear coefficient of 1360W-1km-1," in Proc. Optical Fiber Communications Conference (OFC 2004), Anaheim USA, March 2004, PDP26 (Postdeadline paper).
  4. J.Y.Y. Leong, P. Petropoulos, J.H.V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. Moore, K.E. Frampton, V. Finazzi, X. Feng, T.M. Monro, D.J. Richardson, "High-Nonlinearity Dispersion-Shifted Lead-Silicate Holey Fibers for Efficient 1µm Pumped Supercontinuum Generation," J. Lightwave Technol. 24, 183-190 (2006).
    [CrossRef]
  5. L.B. Fu, M. Rochette, V.G. Ta’eed, D.J. Moss and B.J. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644, 2005.
    [CrossRef] [PubMed]
  6. J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, "Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical time-division demultiplexing based on polarization rotation and a wavelength shift induced by cross-phase modulation," Opt. Lett. 11, 1267-1269 (2005).
    [CrossRef]
  7. P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," presented at the European Conference on Optical Communications (ECOC ’98), Madrid, Spain, Sep. 20-24 (1998).
  8. B.-E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using cross-phase modulation and optical filtering," IEEE Photon. Technol. Lett. 12, 846-848 (2000).
    [CrossRef]
  9. E. Ciaramella, and S. Trillo, "All-optical signal reshaping via four-wave mixing in optical fibers," IEEE Photon. Technol. Lett. 12, 849-851 (2000).
    [CrossRef]
  10. D. Dahan, R. Alizon, A. Bilenca, and G. Eisenstein, "Optical noise reduction in inter-band Raman mediated wavelength conversion," Electron. Lett. 39, 307-309 (2003).
    [CrossRef]
  11. M. Matsumoto, "Performance Analysis and Comparison of Optical 3R Regenerators utilizing Self-Phase Modulation in Fibers," J. Lightwave Technol. 22, 1472-1482 (2004).
    [CrossRef]
  12. J. T. Gopinath, H. M. Shen, H. Sotobayashi, E. P. Ippen, T. Hasegawa, T. Nagashima, and N. Sugimoto, "Highly Nonlinear Bismuth-Oxide Fiber for Supercontinuum Generation and Femtosecond Pulse Compression," J. Lightwave Technol. 23, 3591-3596 (2005).
    [CrossRef]
  13. N. Nakazawa, H. Kubota, and K. Tamura, "Random evolution and coherence degradation of a high-order optical soliton train in the presence of noise," Opt. Lett. 24, 318-320 (1999).
    [CrossRef]

2006 (1)

2005 (3)

2004 (1)

2003 (1)

D. Dahan, R. Alizon, A. Bilenca, and G. Eisenstein, "Optical noise reduction in inter-band Raman mediated wavelength conversion," Electron. Lett. 39, 307-309 (2003).
[CrossRef]

2000 (3)

S. Watanabe and S. Takeda "All-optical noise suppression using two-stage highly-nonlinear fibre loop interferometers," Electron. Lett. 36, 52-53 (2000).
[CrossRef]

B.-E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using cross-phase modulation and optical filtering," IEEE Photon. Technol. Lett. 12, 846-848 (2000).
[CrossRef]

E. Ciaramella, and S. Trillo, "All-optical signal reshaping via four-wave mixing in optical fibers," IEEE Photon. Technol. Lett. 12, 849-851 (2000).
[CrossRef]

1999 (1)

1996 (1)

S. J. B. Yoo, "Wavelength Conversion Technologies for WDM Network Applications," J. Lightwave Technol. 14, 955-966 (1996).
[CrossRef]

Alizon, R.

D. Dahan, R. Alizon, A. Bilenca, and G. Eisenstein, "Optical noise reduction in inter-band Raman mediated wavelength conversion," Electron. Lett. 39, 307-309 (2003).
[CrossRef]

Asimakis, S.

Bilenca, A.

D. Dahan, R. Alizon, A. Bilenca, and G. Eisenstein, "Optical noise reduction in inter-band Raman mediated wavelength conversion," Electron. Lett. 39, 307-309 (2003).
[CrossRef]

Blumenthal, D. J.

B.-E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using cross-phase modulation and optical filtering," IEEE Photon. Technol. Lett. 12, 846-848 (2000).
[CrossRef]

Ciaramella, E.

E. Ciaramella, and S. Trillo, "All-optical signal reshaping via four-wave mixing in optical fibers," IEEE Photon. Technol. Lett. 12, 849-851 (2000).
[CrossRef]

Dahan, D.

D. Dahan, R. Alizon, A. Bilenca, and G. Eisenstein, "Optical noise reduction in inter-band Raman mediated wavelength conversion," Electron. Lett. 39, 307-309 (2003).
[CrossRef]

Ebendorff-Heidepriem, H.

Eggleton, B.J.

Eisenstein, G.

D. Dahan, R. Alizon, A. Bilenca, and G. Eisenstein, "Optical noise reduction in inter-band Raman mediated wavelength conversion," Electron. Lett. 39, 307-309 (2003).
[CrossRef]

Feng, X.

Finazzi, V.

Frampton, K.E.

Fu, L.B.

Gopinath, J. T.

Hasegawa, T.

J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, "Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical time-division demultiplexing based on polarization rotation and a wavelength shift induced by cross-phase modulation," Opt. Lett. 11, 1267-1269 (2005).
[CrossRef]

J. T. Gopinath, H. M. Shen, H. Sotobayashi, E. P. Ippen, T. Hasegawa, T. Nagashima, and N. Sugimoto, "Highly Nonlinear Bismuth-Oxide Fiber for Supercontinuum Generation and Femtosecond Pulse Compression," J. Lightwave Technol. 23, 3591-3596 (2005).
[CrossRef]

Ippen, E. P.

Kikuchi, K.

J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, "Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical time-division demultiplexing based on polarization rotation and a wavelength shift induced by cross-phase modulation," Opt. Lett. 11, 1267-1269 (2005).
[CrossRef]

Kubota, H.

Lee, J. H.

J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, "Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical time-division demultiplexing based on polarization rotation and a wavelength shift induced by cross-phase modulation," Opt. Lett. 11, 1267-1269 (2005).
[CrossRef]

Leong, J.Y.Y.

Matsumoto, M.

Monro, T.M.

Moore, R.

Moss, D.J.

Nagashima, T.

J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, "Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical time-division demultiplexing based on polarization rotation and a wavelength shift induced by cross-phase modulation," Opt. Lett. 11, 1267-1269 (2005).
[CrossRef]

J. T. Gopinath, H. M. Shen, H. Sotobayashi, E. P. Ippen, T. Hasegawa, T. Nagashima, and N. Sugimoto, "Highly Nonlinear Bismuth-Oxide Fiber for Supercontinuum Generation and Femtosecond Pulse Compression," J. Lightwave Technol. 23, 3591-3596 (2005).
[CrossRef]

Nakazawa, N.

Ohara, S.

J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, "Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical time-division demultiplexing based on polarization rotation and a wavelength shift induced by cross-phase modulation," Opt. Lett. 11, 1267-1269 (2005).
[CrossRef]

Ohlen, P.

B.-E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using cross-phase modulation and optical filtering," IEEE Photon. Technol. Lett. 12, 846-848 (2000).
[CrossRef]

Olsson, B.-E.

B.-E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using cross-phase modulation and optical filtering," IEEE Photon. Technol. Lett. 12, 846-848 (2000).
[CrossRef]

Petropoulos, P.

Price, J.H.V.

Rau, L.

B.-E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using cross-phase modulation and optical filtering," IEEE Photon. Technol. Lett. 12, 846-848 (2000).
[CrossRef]

Richardson, D.J.

Rochette, M.

Shen, H. M.

Sotobayashi, H.

Sugimoto, N.

J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, "Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical time-division demultiplexing based on polarization rotation and a wavelength shift induced by cross-phase modulation," Opt. Lett. 11, 1267-1269 (2005).
[CrossRef]

J. T. Gopinath, H. M. Shen, H. Sotobayashi, E. P. Ippen, T. Hasegawa, T. Nagashima, and N. Sugimoto, "Highly Nonlinear Bismuth-Oxide Fiber for Supercontinuum Generation and Femtosecond Pulse Compression," J. Lightwave Technol. 23, 3591-3596 (2005).
[CrossRef]

Ta’eed, V.G.

Takeda, S.

S. Watanabe and S. Takeda "All-optical noise suppression using two-stage highly-nonlinear fibre loop interferometers," Electron. Lett. 36, 52-53 (2000).
[CrossRef]

Tamura, K.

Tanemura, T.

J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, "Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical time-division demultiplexing based on polarization rotation and a wavelength shift induced by cross-phase modulation," Opt. Lett. 11, 1267-1269 (2005).
[CrossRef]

Trillo, S.

E. Ciaramella, and S. Trillo, "All-optical signal reshaping via four-wave mixing in optical fibers," IEEE Photon. Technol. Lett. 12, 849-851 (2000).
[CrossRef]

Watanabe, S.

S. Watanabe and S. Takeda "All-optical noise suppression using two-stage highly-nonlinear fibre loop interferometers," Electron. Lett. 36, 52-53 (2000).
[CrossRef]

Yoo, S. J. B.

S. J. B. Yoo, "Wavelength Conversion Technologies for WDM Network Applications," J. Lightwave Technol. 14, 955-966 (1996).
[CrossRef]

Electron. Lett. (2)

S. Watanabe and S. Takeda "All-optical noise suppression using two-stage highly-nonlinear fibre loop interferometers," Electron. Lett. 36, 52-53 (2000).
[CrossRef]

D. Dahan, R. Alizon, A. Bilenca, and G. Eisenstein, "Optical noise reduction in inter-band Raman mediated wavelength conversion," Electron. Lett. 39, 307-309 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

B.-E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using cross-phase modulation and optical filtering," IEEE Photon. Technol. Lett. 12, 846-848 (2000).
[CrossRef]

E. Ciaramella, and S. Trillo, "All-optical signal reshaping via four-wave mixing in optical fibers," IEEE Photon. Technol. Lett. 12, 849-851 (2000).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Express (1)

Opt. Lett. (2)

J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, "Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical time-division demultiplexing based on polarization rotation and a wavelength shift induced by cross-phase modulation," Opt. Lett. 11, 1267-1269 (2005).
[CrossRef]

N. Nakazawa, H. Kubota, and K. Tamura, "Random evolution and coherence degradation of a high-order optical soliton train in the presence of noise," Opt. Lett. 24, 318-320 (1999).
[CrossRef]

Other (2)

P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," presented at the European Conference on Optical Communications (ECOC ’98), Madrid, Spain, Sep. 20-24 (1998).

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, "Bismuth-based optical fiber with nonlinear coefficient of 1360W-1km-1," in Proc. Optical Fiber Communications Conference (OFC 2004), Anaheim USA, March 2004, PDP26 (Postdeadline paper).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental set-up of the 2-m-long Bi-NLF-based 2R regenerator at 10 Gb/s and 40 Gb/s.

Fig. 2.
Fig. 2.

(a) Experimental SPM-induced spectral broadening for various input peak power levels for the 10 Gb/s case. The spectra are vertically offset for ease of reading. Resolution: 0.5 nm. Intensity and chirp profile of the pulses at (b) the input, and (c) the output of the regenerator measured using SHG-FROG.

Fig. 3.
Fig. 3.

(a) Optical spectra at the input of the Bi-NLF, after propagation in the fiber (experimental and simulated traces) and at the output of the 0.6 nm filter, for Pin~31 dBm and operation at 10 Gb/s. The spectra are vertically offset for ease of reading. Resolution: 0.5 nm. (b) Transfer function of the regenerator. Note that the power levels correspond to the powers at the input of the Bi-NLF patch cord, and not to the input of the Bi-NLF itself.

Fig. 4.
Fig. 4.

Eye diagrams of the input and output of the system for no added noise (b and d) and some induced noise ((c) and (e)) (10ps/div), and corresponding BER measurements (a).

Fig. 5.
Fig. 5.

Experimental results for the 40Gb/s experiment: Intensity and chirp profile of the pulses at (a) the input and (b) the output of the regenerator measured using SHG-FROG. c) Experimental, and simulated SPM-induced spectral broadening when a modulator with finite, or infinite extinction is considered. Figure also shows the optical spectra at the input of the Bi-NLF, dotted curve, and after the 0.6nm filter, dashed curve. The spectra are vertically offset for ease of reading. Resolution: 0.5nm. d) Nonlinear transfer characteristic of the regenerator.

Fig. 6.
Fig. 6.

Eye diagrams of the input and output of the system at 40Gb/s when no noise ((a) and (c)) or some amplitude noise ((b) and (d)) is induced (10ps/div). Corresponding BER measurements are also presented (e).

Metrics