Abstract

A new integrated active quenching circuit (i-AQC) designed in a standard CMOS process is presented, capable of operating with any available single photon avalanche diode (SPAD) over wide temperature range. The circuit is suitable for attaining high photon timing resolution also with wide-area SPADs. The new i-AQC integrates the basic active-quenching loop, a patented low-side timing circuit comprising a fast pulse pick-up scheme that substantially improves time-jitter performance, and a novel active-load passive quenching mechanism (consisting of a current mirror rather than a traditional high-value resistor) greatly improves the maximum counting rate. The circuit is also suitable for portable instruments, miniaturized detector modules and SPAD-array detectors. The overall features of the circuit may open the way to new developments in diversified applications of time-correlated photon counting in life sciences and material sciences.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques, (Springer, Berlin, 2005).
    [CrossRef]
  2. L.-Q. Li and L. M. Davis "Single photon avalanche diode for single molecule detection," Rev. Sci. Instrum. 64, 1524-1529 (1993).
    [CrossRef]
  3. S. Weiss, "Fluorescence spectroscopy of single biomolecules," Science 283, 1676-1683 (1999).
    [CrossRef] [PubMed]
  4. H. Yang, G. Luo, P. Karnchanaphanurach, T.-M. Louie; I. Rech, S. Cova, L. Xun, and X. S. Xie, "Protein conformational dynamics probed by single-molecule electron transfer," Science 302, 262-266 (2003).
    [CrossRef] [PubMed]
  5. S. J. Lassiter, W. Stryjewski, B. L. LegendreJr., R. Erdmann, W. Wahl, J. Wurm, R. Peterson, L. Middendorf, and S. A. Soper, "Time-resolved fluorescence imaging of slab gels for lifetime base-calling in dna sequencing applications," Anal. Chem. 72, 5373-5382 (2000).
    [CrossRef] [PubMed]
  6. D. C. Williams and S. A. Soper, "Ultrasensitive near IR fluorescence detection for capillary gel electrophoresis and DNA sequencing applications," Anal. Chem. 67, 3427-3432 (1995).
    [CrossRef] [PubMed]
  7. S. A. Soper, J. H. Flanagan, B. L. Legendre, D. C. Williams, and R. P. Hammer, "Near-infrared, laser-induced fluorescence detection for DNA sequencing applications," IEEE J. Sel. Top. Quantum Electron. 4, 1129-1139 (1996).
  8. W. Becker, A. Bergmann, K. Konig. U. Tirlapur, "Picosecond fluorescence lifetime microscopy by TCSPC imaging," Proc SPIE 4262, 414-419 (2001).
    [CrossRef]
  9. C. G. Bethea, B. F. Levine, S. Cova, and G. Ripamonti, "High-resolution and high-sensitivity optical-time-domain reflectometer," Opt. Lett. 13, 233-235 (1988)
    [CrossRef] [PubMed]
  10. G. Ripamonti, M. Ghioni, and A. Lacaita, "No dead-space optical time-domain reflectometer," IEEE J. Lightwave Technol. 8, 1278-1283 (1990).
    [CrossRef]
  11. A. Lacaita, P. A. Francese, S. Cova, and G. Ripamonti, "Single-photon optical-time-domain reflectometer at 1.3um with 5cm resolution and high sensivity," Opt. Lett. 18, 1110-1112 (1993)
    [CrossRef] [PubMed]
  12. J. Massa, G. Buller, A. Walker, G. Smith, S. Cova, M. Umasuthan, A. Wallace, "Optical design and evaluation of a three-dimensional imaging and ranging system based on time-correlated single-photon counting," Appl. Opt. 41, 1063-1070 (2002).
    [CrossRef] [PubMed]
  13. S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, "Laser-based distance measurement using picosecond resolution time-correlated single photon counting," Meas. Sci. Technol. 11, 713-716, (2000).
    [CrossRef]
  14. P. D. Townsend, "Experimental investigation of the performance limits for first telecommunications-window quantum cryptography systems," IEEE Photonics Technol. Lett. 10, 1048-1050 (1998).
    [CrossRef]
  15. Gordon, K. J. , Fernandez, V. , Townsend, P. D. , Buller, G. S. , "A short wavelength GigaHertz clocked fiber-optic quantum key distribution system," IEEE J. Quantum Electron. 40, 900-908 (2004).
    [CrossRef]
  16. J. A. Kash, J. C. Tsang, Phys. Stat. Sol.(b),  204, 507 (1997).
    [CrossRef]
  17. F. Stellari, F. Zappa, S. Cova, C. Porta, J. C. Tsang, "High-speed CMOS circuit testing by 50ps time-resolved luminescence measurements," IEEE Trans. Electron Devices 48, 2830-2835 (2001).
    [CrossRef]
  18. Harp 100 from PicoQuant, http://www.photonics.com/spectra/newprods/XQ/ASP/newprodidta.1003/QX/read.htm
  19. TCPC card from Becker-Hickl, http://www.becker-hickl.de/tcspc.htm
  20. J. Mod. Opt 51, 1265-1557 (2004)
  21. P. Antognetti, S. Cova and A. Longoni, "A study of the operation and performances of an avalanche diode as a single photon detector," in Proc. 2nd Ispra Nuclear Electronics Symposium Stresa May 20-23, Euratom Publication EUR 5370e 453-456 (1975).
  22. S. Cova, A. Longoni, and A. Andreoni, "Towards picosecond resolution with single-photon avalanche diodes," Rev. Sci. Instrum. 52, 408-412 (1981)
    [CrossRef]
  23. S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, "Avalanche photodiodes and quenching circuits for single photon -detection," Appl. Opt. 35, 1956-1976 (1996).
    [CrossRef] [PubMed]
  24. F. Zappa, A. Lotito, A. C. Giudice, S. Cova, and M. Ghioni, "Monolithic active-quenching and active-reset circuit for single-photon avalanche detectors," IEEE J. Solid-State Circuits 38, 1298-1301 (2003).
    [CrossRef]
  25. F. Zappa, S. Tisa, A. Gulinatti, A. Gallivanoni, and S. Cova, "Complete single--photon counting and timing module in a microchip," Opt. Lett. 30, 1327 (2005).
    [CrossRef] [PubMed]
  26. S. Cova, M. Ghioni, and F. Zappa "Circuit for high precision detection of the time of arrival of photons falling on single photon avalanche diodes," US patent No. 6,384,663 B2, May 7, 2002
  27. I. Rech, I. Labanca, M. Ghioni and S. Cova, Rev. Sci. Instr. (to be published).
  28. A. Lacaita, M. Ghioni, and S. Cova, "Double epitaxy improves single--photon avalanche diode performance," Electron. Lett. 25, 841-843 (1989).
    [CrossRef]
  29. A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. Popovic, G. Ribordy and N. Gisin "Single photon detector fabricated in complementary metal-oxide-semiconductor high-voltage technology," Rev. Sci. Instrum. 74, 3263-3270 (2003).
    [CrossRef]
  30. A. Lacaita, M. Mastrapasqua, "Strong dependence of time resolution on detector diameter in single photon avalanche diodes," Electron. Lett. 26, 2053-2054 (1990).
    [CrossRef]
  31. H. Dautet, P. Deschampes, B. Dion, A. D. MacGregor, D. MacSween, R. J. McIntyre, C. Trottier, and P. Webb, "Photon counting techniques with silicon avalanche photodiodes," Appl. Opt. 32, 3894-3900 (1993).
    [PubMed]
  32. SPCM-AQR Single Photon Counting Module Data Sheet, Perkin Elmer Optoelectronics Canada Ltd., Vaudreuil, Quebec, Canada; http://optoelectronics.perkinelmer.com
  33. L.-Q. Li and L. M. Davis "Single photon avalanche diode for single molecule detection," Rev. Sci. Instrum. 64, 1524-1529 (1993).
    [CrossRef]
  34. S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, "Evolution and prospects for single-photon avalanche diodes and quenching circuits," J. Mod. Opt. 51, 1267-1288 (2004).
  35. A. Spinelli and L. M. Davis, H. Dautet, "Actively quenched single-photon avalanche diode for high repetition rate time-gated photon counting," Rev. Sci. Instrum. 67, 55-61 (1996).
    [CrossRef]
  36. A. Lacaita, S. Cova, A. Spinelli, and F. Zappa, "Photon-assisted avalanche spreading in reach-through photodiodes," Appl. Phys. Lett. 62, 606-608 (1993).
    [CrossRef]
  37. A. Spinelli, A. L. Lacaita, "Physics and numerical simulation of single photon avalanche diodes," IEEE Trans. Electron Devices 44, 1931-1943 (1997) and A. Lacaita, (personal communication 1995)
    [CrossRef]
  38. A. Gulinatti, P. Maccagnani, I. Rech, M. Ghioni, and S. Cova, "35 ps time resolution at room temperature with large area single photon avalanche diodes," Electron. Lett. 41, 272-274 (2005).
    [CrossRef]
  39. D. Y. Kim, O. S. Kwon, and J. H. Bang, "The design of the high speed amplifier circuit for using in the analog subsytems," in Proc. 35th MWSCAS1, Washington DC, USA, 485-488 (1992).

2005

A. Gulinatti, P. Maccagnani, I. Rech, M. Ghioni, and S. Cova, "35 ps time resolution at room temperature with large area single photon avalanche diodes," Electron. Lett. 41, 272-274 (2005).
[CrossRef]

F. Zappa, S. Tisa, A. Gulinatti, A. Gallivanoni, and S. Cova, "Complete single--photon counting and timing module in a microchip," Opt. Lett. 30, 1327 (2005).
[CrossRef] [PubMed]

2004

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, "Evolution and prospects for single-photon avalanche diodes and quenching circuits," J. Mod. Opt. 51, 1267-1288 (2004).

Gordon, K. J. , Fernandez, V. , Townsend, P. D. , Buller, G. S. , "A short wavelength GigaHertz clocked fiber-optic quantum key distribution system," IEEE J. Quantum Electron. 40, 900-908 (2004).
[CrossRef]

J. Mod. Opt 51, 1265-1557 (2004)

2003

F. Zappa, A. Lotito, A. C. Giudice, S. Cova, and M. Ghioni, "Monolithic active-quenching and active-reset circuit for single-photon avalanche detectors," IEEE J. Solid-State Circuits 38, 1298-1301 (2003).
[CrossRef]

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. Popovic, G. Ribordy and N. Gisin "Single photon detector fabricated in complementary metal-oxide-semiconductor high-voltage technology," Rev. Sci. Instrum. 74, 3263-3270 (2003).
[CrossRef]

H. Yang, G. Luo, P. Karnchanaphanurach, T.-M. Louie; I. Rech, S. Cova, L. Xun, and X. S. Xie, "Protein conformational dynamics probed by single-molecule electron transfer," Science 302, 262-266 (2003).
[CrossRef] [PubMed]

2002

2001

W. Becker, A. Bergmann, K. Konig. U. Tirlapur, "Picosecond fluorescence lifetime microscopy by TCSPC imaging," Proc SPIE 4262, 414-419 (2001).
[CrossRef]

F. Stellari, F. Zappa, S. Cova, C. Porta, J. C. Tsang, "High-speed CMOS circuit testing by 50ps time-resolved luminescence measurements," IEEE Trans. Electron Devices 48, 2830-2835 (2001).
[CrossRef]

2000

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, "Laser-based distance measurement using picosecond resolution time-correlated single photon counting," Meas. Sci. Technol. 11, 713-716, (2000).
[CrossRef]

S. J. Lassiter, W. Stryjewski, B. L. LegendreJr., R. Erdmann, W. Wahl, J. Wurm, R. Peterson, L. Middendorf, and S. A. Soper, "Time-resolved fluorescence imaging of slab gels for lifetime base-calling in dna sequencing applications," Anal. Chem. 72, 5373-5382 (2000).
[CrossRef] [PubMed]

1999

S. Weiss, "Fluorescence spectroscopy of single biomolecules," Science 283, 1676-1683 (1999).
[CrossRef] [PubMed]

1998

P. D. Townsend, "Experimental investigation of the performance limits for first telecommunications-window quantum cryptography systems," IEEE Photonics Technol. Lett. 10, 1048-1050 (1998).
[CrossRef]

1997

J. A. Kash, J. C. Tsang, Phys. Stat. Sol.(b),  204, 507 (1997).
[CrossRef]

1996

S. A. Soper, J. H. Flanagan, B. L. Legendre, D. C. Williams, and R. P. Hammer, "Near-infrared, laser-induced fluorescence detection for DNA sequencing applications," IEEE J. Sel. Top. Quantum Electron. 4, 1129-1139 (1996).

S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, "Avalanche photodiodes and quenching circuits for single photon -detection," Appl. Opt. 35, 1956-1976 (1996).
[CrossRef] [PubMed]

A. Spinelli and L. M. Davis, H. Dautet, "Actively quenched single-photon avalanche diode for high repetition rate time-gated photon counting," Rev. Sci. Instrum. 67, 55-61 (1996).
[CrossRef]

1995

D. C. Williams and S. A. Soper, "Ultrasensitive near IR fluorescence detection for capillary gel electrophoresis and DNA sequencing applications," Anal. Chem. 67, 3427-3432 (1995).
[CrossRef] [PubMed]

1993

L.-Q. Li and L. M. Davis "Single photon avalanche diode for single molecule detection," Rev. Sci. Instrum. 64, 1524-1529 (1993).
[CrossRef]

A. Lacaita, S. Cova, A. Spinelli, and F. Zappa, "Photon-assisted avalanche spreading in reach-through photodiodes," Appl. Phys. Lett. 62, 606-608 (1993).
[CrossRef]

L.-Q. Li and L. M. Davis "Single photon avalanche diode for single molecule detection," Rev. Sci. Instrum. 64, 1524-1529 (1993).
[CrossRef]

A. Lacaita, P. A. Francese, S. Cova, and G. Ripamonti, "Single-photon optical-time-domain reflectometer at 1.3um with 5cm resolution and high sensivity," Opt. Lett. 18, 1110-1112 (1993)
[CrossRef] [PubMed]

H. Dautet, P. Deschampes, B. Dion, A. D. MacGregor, D. MacSween, R. J. McIntyre, C. Trottier, and P. Webb, "Photon counting techniques with silicon avalanche photodiodes," Appl. Opt. 32, 3894-3900 (1993).
[PubMed]

1990

G. Ripamonti, M. Ghioni, and A. Lacaita, "No dead-space optical time-domain reflectometer," IEEE J. Lightwave Technol. 8, 1278-1283 (1990).
[CrossRef]

A. Lacaita, M. Mastrapasqua, "Strong dependence of time resolution on detector diameter in single photon avalanche diodes," Electron. Lett. 26, 2053-2054 (1990).
[CrossRef]

1989

A. Lacaita, M. Ghioni, and S. Cova, "Double epitaxy improves single--photon avalanche diode performance," Electron. Lett. 25, 841-843 (1989).
[CrossRef]

1988

1981

S. Cova, A. Longoni, and A. Andreoni, "Towards picosecond resolution with single-photon avalanche diodes," Rev. Sci. Instrum. 52, 408-412 (1981)
[CrossRef]

Andreoni, A.

S. Cova, A. Longoni, and A. Andreoni, "Towards picosecond resolution with single-photon avalanche diodes," Rev. Sci. Instrum. 52, 408-412 (1981)
[CrossRef]

Becker, W.

W. Becker, A. Bergmann, K. Konig. U. Tirlapur, "Picosecond fluorescence lifetime microscopy by TCSPC imaging," Proc SPIE 4262, 414-419 (2001).
[CrossRef]

Bergmann, A.

W. Becker, A. Bergmann, K. Konig. U. Tirlapur, "Picosecond fluorescence lifetime microscopy by TCSPC imaging," Proc SPIE 4262, 414-419 (2001).
[CrossRef]

Besse, P. A.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. Popovic, G. Ribordy and N. Gisin "Single photon detector fabricated in complementary metal-oxide-semiconductor high-voltage technology," Rev. Sci. Instrum. 74, 3263-3270 (2003).
[CrossRef]

Bethea, C. G.

Buller, G.

Buller, G. S.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, "Laser-based distance measurement using picosecond resolution time-correlated single photon counting," Meas. Sci. Technol. 11, 713-716, (2000).
[CrossRef]

Buller, P. D.

Gordon, K. J. , Fernandez, V. , Townsend, P. D. , Buller, G. S. , "A short wavelength GigaHertz clocked fiber-optic quantum key distribution system," IEEE J. Quantum Electron. 40, 900-908 (2004).
[CrossRef]

Cova, S.

A. Gulinatti, P. Maccagnani, I. Rech, M. Ghioni, and S. Cova, "35 ps time resolution at room temperature with large area single photon avalanche diodes," Electron. Lett. 41, 272-274 (2005).
[CrossRef]

F. Zappa, S. Tisa, A. Gulinatti, A. Gallivanoni, and S. Cova, "Complete single--photon counting and timing module in a microchip," Opt. Lett. 30, 1327 (2005).
[CrossRef] [PubMed]

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, "Evolution and prospects for single-photon avalanche diodes and quenching circuits," J. Mod. Opt. 51, 1267-1288 (2004).

H. Yang, G. Luo, P. Karnchanaphanurach, T.-M. Louie; I. Rech, S. Cova, L. Xun, and X. S. Xie, "Protein conformational dynamics probed by single-molecule electron transfer," Science 302, 262-266 (2003).
[CrossRef] [PubMed]

F. Zappa, A. Lotito, A. C. Giudice, S. Cova, and M. Ghioni, "Monolithic active-quenching and active-reset circuit for single-photon avalanche detectors," IEEE J. Solid-State Circuits 38, 1298-1301 (2003).
[CrossRef]

J. Massa, G. Buller, A. Walker, G. Smith, S. Cova, M. Umasuthan, A. Wallace, "Optical design and evaluation of a three-dimensional imaging and ranging system based on time-correlated single-photon counting," Appl. Opt. 41, 1063-1070 (2002).
[CrossRef] [PubMed]

F. Stellari, F. Zappa, S. Cova, C. Porta, J. C. Tsang, "High-speed CMOS circuit testing by 50ps time-resolved luminescence measurements," IEEE Trans. Electron Devices 48, 2830-2835 (2001).
[CrossRef]

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, "Laser-based distance measurement using picosecond resolution time-correlated single photon counting," Meas. Sci. Technol. 11, 713-716, (2000).
[CrossRef]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, "Avalanche photodiodes and quenching circuits for single photon -detection," Appl. Opt. 35, 1956-1976 (1996).
[CrossRef] [PubMed]

A. Lacaita, P. A. Francese, S. Cova, and G. Ripamonti, "Single-photon optical-time-domain reflectometer at 1.3um with 5cm resolution and high sensivity," Opt. Lett. 18, 1110-1112 (1993)
[CrossRef] [PubMed]

A. Lacaita, S. Cova, A. Spinelli, and F. Zappa, "Photon-assisted avalanche spreading in reach-through photodiodes," Appl. Phys. Lett. 62, 606-608 (1993).
[CrossRef]

A. Lacaita, M. Ghioni, and S. Cova, "Double epitaxy improves single--photon avalanche diode performance," Electron. Lett. 25, 841-843 (1989).
[CrossRef]

C. G. Bethea, B. F. Levine, S. Cova, and G. Ripamonti, "High-resolution and high-sensitivity optical-time-domain reflectometer," Opt. Lett. 13, 233-235 (1988)
[CrossRef] [PubMed]

S. Cova, A. Longoni, and A. Andreoni, "Towards picosecond resolution with single-photon avalanche diodes," Rev. Sci. Instrum. 52, 408-412 (1981)
[CrossRef]

I. Rech, I. Labanca, M. Ghioni and S. Cova, Rev. Sci. Instr. (to be published).

Dautet, H.

A. Spinelli and L. M. Davis, H. Dautet, "Actively quenched single-photon avalanche diode for high repetition rate time-gated photon counting," Rev. Sci. Instrum. 67, 55-61 (1996).
[CrossRef]

H. Dautet, P. Deschampes, B. Dion, A. D. MacGregor, D. MacSween, R. J. McIntyre, C. Trottier, and P. Webb, "Photon counting techniques with silicon avalanche photodiodes," Appl. Opt. 32, 3894-3900 (1993).
[PubMed]

Davis, L. M.

A. Spinelli and L. M. Davis, H. Dautet, "Actively quenched single-photon avalanche diode for high repetition rate time-gated photon counting," Rev. Sci. Instrum. 67, 55-61 (1996).
[CrossRef]

L.-Q. Li and L. M. Davis "Single photon avalanche diode for single molecule detection," Rev. Sci. Instrum. 64, 1524-1529 (1993).
[CrossRef]

L.-Q. Li and L. M. Davis "Single photon avalanche diode for single molecule detection," Rev. Sci. Instrum. 64, 1524-1529 (1993).
[CrossRef]

Deschampes, P.

Dion, B.

Erdmann, R.

S. J. Lassiter, W. Stryjewski, B. L. LegendreJr., R. Erdmann, W. Wahl, J. Wurm, R. Peterson, L. Middendorf, and S. A. Soper, "Time-resolved fluorescence imaging of slab gels for lifetime base-calling in dna sequencing applications," Anal. Chem. 72, 5373-5382 (2000).
[CrossRef] [PubMed]

Fernandez, K. J.

Gordon, K. J. , Fernandez, V. , Townsend, P. D. , Buller, G. S. , "A short wavelength GigaHertz clocked fiber-optic quantum key distribution system," IEEE J. Quantum Electron. 40, 900-908 (2004).
[CrossRef]

Flanagan, J. H.

S. A. Soper, J. H. Flanagan, B. L. Legendre, D. C. Williams, and R. P. Hammer, "Near-infrared, laser-induced fluorescence detection for DNA sequencing applications," IEEE J. Sel. Top. Quantum Electron. 4, 1129-1139 (1996).

Francese, P. A.

Furrer, B.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. Popovic, G. Ribordy and N. Gisin "Single photon detector fabricated in complementary metal-oxide-semiconductor high-voltage technology," Rev. Sci. Instrum. 74, 3263-3270 (2003).
[CrossRef]

Gallivanoni, A.

Gani, M.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. Popovic, G. Ribordy and N. Gisin "Single photon detector fabricated in complementary metal-oxide-semiconductor high-voltage technology," Rev. Sci. Instrum. 74, 3263-3270 (2003).
[CrossRef]

Ghioni, M.

A. Gulinatti, P. Maccagnani, I. Rech, M. Ghioni, and S. Cova, "35 ps time resolution at room temperature with large area single photon avalanche diodes," Electron. Lett. 41, 272-274 (2005).
[CrossRef]

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, "Evolution and prospects for single-photon avalanche diodes and quenching circuits," J. Mod. Opt. 51, 1267-1288 (2004).

F. Zappa, A. Lotito, A. C. Giudice, S. Cova, and M. Ghioni, "Monolithic active-quenching and active-reset circuit for single-photon avalanche detectors," IEEE J. Solid-State Circuits 38, 1298-1301 (2003).
[CrossRef]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, "Avalanche photodiodes and quenching circuits for single photon -detection," Appl. Opt. 35, 1956-1976 (1996).
[CrossRef] [PubMed]

G. Ripamonti, M. Ghioni, and A. Lacaita, "No dead-space optical time-domain reflectometer," IEEE J. Lightwave Technol. 8, 1278-1283 (1990).
[CrossRef]

A. Lacaita, M. Ghioni, and S. Cova, "Double epitaxy improves single--photon avalanche diode performance," Electron. Lett. 25, 841-843 (1989).
[CrossRef]

I. Rech, I. Labanca, M. Ghioni and S. Cova, Rev. Sci. Instr. (to be published).

Gisin, N.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. Popovic, G. Ribordy and N. Gisin "Single photon detector fabricated in complementary metal-oxide-semiconductor high-voltage technology," Rev. Sci. Instrum. 74, 3263-3270 (2003).
[CrossRef]

Giudice, A. C.

F. Zappa, A. Lotito, A. C. Giudice, S. Cova, and M. Ghioni, "Monolithic active-quenching and active-reset circuit for single-photon avalanche detectors," IEEE J. Solid-State Circuits 38, 1298-1301 (2003).
[CrossRef]

Gordon,

Gordon, K. J. , Fernandez, V. , Townsend, P. D. , Buller, G. S. , "A short wavelength GigaHertz clocked fiber-optic quantum key distribution system," IEEE J. Quantum Electron. 40, 900-908 (2004).
[CrossRef]

Gulinatti, A.

A. Gulinatti, P. Maccagnani, I. Rech, M. Ghioni, and S. Cova, "35 ps time resolution at room temperature with large area single photon avalanche diodes," Electron. Lett. 41, 272-274 (2005).
[CrossRef]

F. Zappa, S. Tisa, A. Gulinatti, A. Gallivanoni, and S. Cova, "Complete single--photon counting and timing module in a microchip," Opt. Lett. 30, 1327 (2005).
[CrossRef] [PubMed]

Hammer, R. P.

S. A. Soper, J. H. Flanagan, B. L. Legendre, D. C. Williams, and R. P. Hammer, "Near-infrared, laser-induced fluorescence detection for DNA sequencing applications," IEEE J. Sel. Top. Quantum Electron. 4, 1129-1139 (1996).

Karnchanaphanurach, P.

H. Yang, G. Luo, P. Karnchanaphanurach, T.-M. Louie; I. Rech, S. Cova, L. Xun, and X. S. Xie, "Protein conformational dynamics probed by single-molecule electron transfer," Science 302, 262-266 (2003).
[CrossRef] [PubMed]

Kash, J. A.

J. A. Kash, J. C. Tsang, Phys. Stat. Sol.(b),  204, 507 (1997).
[CrossRef]

Konig, K.

W. Becker, A. Bergmann, K. Konig. U. Tirlapur, "Picosecond fluorescence lifetime microscopy by TCSPC imaging," Proc SPIE 4262, 414-419 (2001).
[CrossRef]

Labanca, I.

I. Rech, I. Labanca, M. Ghioni and S. Cova, Rev. Sci. Instr. (to be published).

Lacaita, A.

S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, "Avalanche photodiodes and quenching circuits for single photon -detection," Appl. Opt. 35, 1956-1976 (1996).
[CrossRef] [PubMed]

A. Lacaita, P. A. Francese, S. Cova, and G. Ripamonti, "Single-photon optical-time-domain reflectometer at 1.3um with 5cm resolution and high sensivity," Opt. Lett. 18, 1110-1112 (1993)
[CrossRef] [PubMed]

A. Lacaita, S. Cova, A. Spinelli, and F. Zappa, "Photon-assisted avalanche spreading in reach-through photodiodes," Appl. Phys. Lett. 62, 606-608 (1993).
[CrossRef]

G. Ripamonti, M. Ghioni, and A. Lacaita, "No dead-space optical time-domain reflectometer," IEEE J. Lightwave Technol. 8, 1278-1283 (1990).
[CrossRef]

A. Lacaita, M. Mastrapasqua, "Strong dependence of time resolution on detector diameter in single photon avalanche diodes," Electron. Lett. 26, 2053-2054 (1990).
[CrossRef]

A. Lacaita, M. Ghioni, and S. Cova, "Double epitaxy improves single--photon avalanche diode performance," Electron. Lett. 25, 841-843 (1989).
[CrossRef]

Lassiter, S. J.

S. J. Lassiter, W. Stryjewski, B. L. LegendreJr., R. Erdmann, W. Wahl, J. Wurm, R. Peterson, L. Middendorf, and S. A. Soper, "Time-resolved fluorescence imaging of slab gels for lifetime base-calling in dna sequencing applications," Anal. Chem. 72, 5373-5382 (2000).
[CrossRef] [PubMed]

Legendre, B. L.

S. J. Lassiter, W. Stryjewski, B. L. LegendreJr., R. Erdmann, W. Wahl, J. Wurm, R. Peterson, L. Middendorf, and S. A. Soper, "Time-resolved fluorescence imaging of slab gels for lifetime base-calling in dna sequencing applications," Anal. Chem. 72, 5373-5382 (2000).
[CrossRef] [PubMed]

S. A. Soper, J. H. Flanagan, B. L. Legendre, D. C. Williams, and R. P. Hammer, "Near-infrared, laser-induced fluorescence detection for DNA sequencing applications," IEEE J. Sel. Top. Quantum Electron. 4, 1129-1139 (1996).

Levine, B. F.

Li, L.-Q.

L.-Q. Li and L. M. Davis "Single photon avalanche diode for single molecule detection," Rev. Sci. Instrum. 64, 1524-1529 (1993).
[CrossRef]

L.-Q. Li and L. M. Davis "Single photon avalanche diode for single molecule detection," Rev. Sci. Instrum. 64, 1524-1529 (1993).
[CrossRef]

Longoni, A.

S. Cova, A. Longoni, and A. Andreoni, "Towards picosecond resolution with single-photon avalanche diodes," Rev. Sci. Instrum. 52, 408-412 (1981)
[CrossRef]

Lotito, A.

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, "Evolution and prospects for single-photon avalanche diodes and quenching circuits," J. Mod. Opt. 51, 1267-1288 (2004).

F. Zappa, A. Lotito, A. C. Giudice, S. Cova, and M. Ghioni, "Monolithic active-quenching and active-reset circuit for single-photon avalanche detectors," IEEE J. Solid-State Circuits 38, 1298-1301 (2003).
[CrossRef]

Louie, T.-M.

H. Yang, G. Luo, P. Karnchanaphanurach, T.-M. Louie; I. Rech, S. Cova, L. Xun, and X. S. Xie, "Protein conformational dynamics probed by single-molecule electron transfer," Science 302, 262-266 (2003).
[CrossRef] [PubMed]

Luo, G.

H. Yang, G. Luo, P. Karnchanaphanurach, T.-M. Louie; I. Rech, S. Cova, L. Xun, and X. S. Xie, "Protein conformational dynamics probed by single-molecule electron transfer," Science 302, 262-266 (2003).
[CrossRef] [PubMed]

Maccagnani, P.

A. Gulinatti, P. Maccagnani, I. Rech, M. Ghioni, and S. Cova, "35 ps time resolution at room temperature with large area single photon avalanche diodes," Electron. Lett. 41, 272-274 (2005).
[CrossRef]

MacGregor, A. D.

MacSween, D.

Massa, J.

Mastrapasqua, M.

A. Lacaita, M. Mastrapasqua, "Strong dependence of time resolution on detector diameter in single photon avalanche diodes," Electron. Lett. 26, 2053-2054 (1990).
[CrossRef]

McIntyre, R. J.

Middendorf, L.

S. J. Lassiter, W. Stryjewski, B. L. LegendreJr., R. Erdmann, W. Wahl, J. Wurm, R. Peterson, L. Middendorf, and S. A. Soper, "Time-resolved fluorescence imaging of slab gels for lifetime base-calling in dna sequencing applications," Anal. Chem. 72, 5373-5382 (2000).
[CrossRef] [PubMed]

Pellegrini, S.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, "Laser-based distance measurement using picosecond resolution time-correlated single photon counting," Meas. Sci. Technol. 11, 713-716, (2000).
[CrossRef]

Peterson, R.

S. J. Lassiter, W. Stryjewski, B. L. LegendreJr., R. Erdmann, W. Wahl, J. Wurm, R. Peterson, L. Middendorf, and S. A. Soper, "Time-resolved fluorescence imaging of slab gels for lifetime base-calling in dna sequencing applications," Anal. Chem. 72, 5373-5382 (2000).
[CrossRef] [PubMed]

Popovic, R.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. Popovic, G. Ribordy and N. Gisin "Single photon detector fabricated in complementary metal-oxide-semiconductor high-voltage technology," Rev. Sci. Instrum. 74, 3263-3270 (2003).
[CrossRef]

Porta, C.

F. Stellari, F. Zappa, S. Cova, C. Porta, J. C. Tsang, "High-speed CMOS circuit testing by 50ps time-resolved luminescence measurements," IEEE Trans. Electron Devices 48, 2830-2835 (2001).
[CrossRef]

Rech, I.

A. Gulinatti, P. Maccagnani, I. Rech, M. Ghioni, and S. Cova, "35 ps time resolution at room temperature with large area single photon avalanche diodes," Electron. Lett. 41, 272-274 (2005).
[CrossRef]

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, "Evolution and prospects for single-photon avalanche diodes and quenching circuits," J. Mod. Opt. 51, 1267-1288 (2004).

H. Yang, G. Luo, P. Karnchanaphanurach, T.-M. Louie; I. Rech, S. Cova, L. Xun, and X. S. Xie, "Protein conformational dynamics probed by single-molecule electron transfer," Science 302, 262-266 (2003).
[CrossRef] [PubMed]

I. Rech, I. Labanca, M. Ghioni and S. Cova, Rev. Sci. Instr. (to be published).

Ribordy, G.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. Popovic, G. Ribordy and N. Gisin "Single photon detector fabricated in complementary metal-oxide-semiconductor high-voltage technology," Rev. Sci. Instrum. 74, 3263-3270 (2003).
[CrossRef]

Ripamonti, G.

Rochas, A.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. Popovic, G. Ribordy and N. Gisin "Single photon detector fabricated in complementary metal-oxide-semiconductor high-voltage technology," Rev. Sci. Instrum. 74, 3263-3270 (2003).
[CrossRef]

Samori, C.

Smith, G.

Smith, J. M.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, "Laser-based distance measurement using picosecond resolution time-correlated single photon counting," Meas. Sci. Technol. 11, 713-716, (2000).
[CrossRef]

Soper, S. A.

S. J. Lassiter, W. Stryjewski, B. L. LegendreJr., R. Erdmann, W. Wahl, J. Wurm, R. Peterson, L. Middendorf, and S. A. Soper, "Time-resolved fluorescence imaging of slab gels for lifetime base-calling in dna sequencing applications," Anal. Chem. 72, 5373-5382 (2000).
[CrossRef] [PubMed]

S. A. Soper, J. H. Flanagan, B. L. Legendre, D. C. Williams, and R. P. Hammer, "Near-infrared, laser-induced fluorescence detection for DNA sequencing applications," IEEE J. Sel. Top. Quantum Electron. 4, 1129-1139 (1996).

D. C. Williams and S. A. Soper, "Ultrasensitive near IR fluorescence detection for capillary gel electrophoresis and DNA sequencing applications," Anal. Chem. 67, 3427-3432 (1995).
[CrossRef] [PubMed]

Spinelli, A.

A. Spinelli and L. M. Davis, H. Dautet, "Actively quenched single-photon avalanche diode for high repetition rate time-gated photon counting," Rev. Sci. Instrum. 67, 55-61 (1996).
[CrossRef]

A. Lacaita, S. Cova, A. Spinelli, and F. Zappa, "Photon-assisted avalanche spreading in reach-through photodiodes," Appl. Phys. Lett. 62, 606-608 (1993).
[CrossRef]

Stellari, F.

F. Stellari, F. Zappa, S. Cova, C. Porta, J. C. Tsang, "High-speed CMOS circuit testing by 50ps time-resolved luminescence measurements," IEEE Trans. Electron Devices 48, 2830-2835 (2001).
[CrossRef]

Stryjewski, W.

S. J. Lassiter, W. Stryjewski, B. L. LegendreJr., R. Erdmann, W. Wahl, J. Wurm, R. Peterson, L. Middendorf, and S. A. Soper, "Time-resolved fluorescence imaging of slab gels for lifetime base-calling in dna sequencing applications," Anal. Chem. 72, 5373-5382 (2000).
[CrossRef] [PubMed]

Tisa, S.

Townsend, P. D.

P. D. Townsend, "Experimental investigation of the performance limits for first telecommunications-window quantum cryptography systems," IEEE Photonics Technol. Lett. 10, 1048-1050 (1998).
[CrossRef]

Townsend, V.

Gordon, K. J. , Fernandez, V. , Townsend, P. D. , Buller, G. S. , "A short wavelength GigaHertz clocked fiber-optic quantum key distribution system," IEEE J. Quantum Electron. 40, 900-908 (2004).
[CrossRef]

Trottier, C.

Tsang, J. C.

F. Stellari, F. Zappa, S. Cova, C. Porta, J. C. Tsang, "High-speed CMOS circuit testing by 50ps time-resolved luminescence measurements," IEEE Trans. Electron Devices 48, 2830-2835 (2001).
[CrossRef]

J. A. Kash, J. C. Tsang, Phys. Stat. Sol.(b),  204, 507 (1997).
[CrossRef]

Umasuthan, M.

Wahl, W.

S. J. Lassiter, W. Stryjewski, B. L. LegendreJr., R. Erdmann, W. Wahl, J. Wurm, R. Peterson, L. Middendorf, and S. A. Soper, "Time-resolved fluorescence imaging of slab gels for lifetime base-calling in dna sequencing applications," Anal. Chem. 72, 5373-5382 (2000).
[CrossRef] [PubMed]

Walker, A.

Wallace, A.

Wallace, A. M.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, "Laser-based distance measurement using picosecond resolution time-correlated single photon counting," Meas. Sci. Technol. 11, 713-716, (2000).
[CrossRef]

Webb, P.

Weiss, S.

S. Weiss, "Fluorescence spectroscopy of single biomolecules," Science 283, 1676-1683 (1999).
[CrossRef] [PubMed]

Williams, D. C.

S. A. Soper, J. H. Flanagan, B. L. Legendre, D. C. Williams, and R. P. Hammer, "Near-infrared, laser-induced fluorescence detection for DNA sequencing applications," IEEE J. Sel. Top. Quantum Electron. 4, 1129-1139 (1996).

D. C. Williams and S. A. Soper, "Ultrasensitive near IR fluorescence detection for capillary gel electrophoresis and DNA sequencing applications," Anal. Chem. 67, 3427-3432 (1995).
[CrossRef] [PubMed]

Wurm, J.

S. J. Lassiter, W. Stryjewski, B. L. LegendreJr., R. Erdmann, W. Wahl, J. Wurm, R. Peterson, L. Middendorf, and S. A. Soper, "Time-resolved fluorescence imaging of slab gels for lifetime base-calling in dna sequencing applications," Anal. Chem. 72, 5373-5382 (2000).
[CrossRef] [PubMed]

Xie, X. S.

H. Yang, G. Luo, P. Karnchanaphanurach, T.-M. Louie; I. Rech, S. Cova, L. Xun, and X. S. Xie, "Protein conformational dynamics probed by single-molecule electron transfer," Science 302, 262-266 (2003).
[CrossRef] [PubMed]

Xun, L.

H. Yang, G. Luo, P. Karnchanaphanurach, T.-M. Louie; I. Rech, S. Cova, L. Xun, and X. S. Xie, "Protein conformational dynamics probed by single-molecule electron transfer," Science 302, 262-266 (2003).
[CrossRef] [PubMed]

Yang, H.

H. Yang, G. Luo, P. Karnchanaphanurach, T.-M. Louie; I. Rech, S. Cova, L. Xun, and X. S. Xie, "Protein conformational dynamics probed by single-molecule electron transfer," Science 302, 262-266 (2003).
[CrossRef] [PubMed]

Zappa, F.

F. Zappa, S. Tisa, A. Gulinatti, A. Gallivanoni, and S. Cova, "Complete single--photon counting and timing module in a microchip," Opt. Lett. 30, 1327 (2005).
[CrossRef] [PubMed]

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, "Evolution and prospects for single-photon avalanche diodes and quenching circuits," J. Mod. Opt. 51, 1267-1288 (2004).

F. Zappa, A. Lotito, A. C. Giudice, S. Cova, and M. Ghioni, "Monolithic active-quenching and active-reset circuit for single-photon avalanche detectors," IEEE J. Solid-State Circuits 38, 1298-1301 (2003).
[CrossRef]

F. Stellari, F. Zappa, S. Cova, C. Porta, J. C. Tsang, "High-speed CMOS circuit testing by 50ps time-resolved luminescence measurements," IEEE Trans. Electron Devices 48, 2830-2835 (2001).
[CrossRef]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, "Avalanche photodiodes and quenching circuits for single photon -detection," Appl. Opt. 35, 1956-1976 (1996).
[CrossRef] [PubMed]

A. Lacaita, S. Cova, A. Spinelli, and F. Zappa, "Photon-assisted avalanche spreading in reach-through photodiodes," Appl. Phys. Lett. 62, 606-608 (1993).
[CrossRef]

Anal. Chem.

S. J. Lassiter, W. Stryjewski, B. L. LegendreJr., R. Erdmann, W. Wahl, J. Wurm, R. Peterson, L. Middendorf, and S. A. Soper, "Time-resolved fluorescence imaging of slab gels for lifetime base-calling in dna sequencing applications," Anal. Chem. 72, 5373-5382 (2000).
[CrossRef] [PubMed]

D. C. Williams and S. A. Soper, "Ultrasensitive near IR fluorescence detection for capillary gel electrophoresis and DNA sequencing applications," Anal. Chem. 67, 3427-3432 (1995).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

A. Lacaita, S. Cova, A. Spinelli, and F. Zappa, "Photon-assisted avalanche spreading in reach-through photodiodes," Appl. Phys. Lett. 62, 606-608 (1993).
[CrossRef]

Electron. Lett.

A. Gulinatti, P. Maccagnani, I. Rech, M. Ghioni, and S. Cova, "35 ps time resolution at room temperature with large area single photon avalanche diodes," Electron. Lett. 41, 272-274 (2005).
[CrossRef]

A. Lacaita, M. Ghioni, and S. Cova, "Double epitaxy improves single--photon avalanche diode performance," Electron. Lett. 25, 841-843 (1989).
[CrossRef]

A. Lacaita, M. Mastrapasqua, "Strong dependence of time resolution on detector diameter in single photon avalanche diodes," Electron. Lett. 26, 2053-2054 (1990).
[CrossRef]

IEEE J. Lightwave Technol.

G. Ripamonti, M. Ghioni, and A. Lacaita, "No dead-space optical time-domain reflectometer," IEEE J. Lightwave Technol. 8, 1278-1283 (1990).
[CrossRef]

IEEE J. Quantum Electron.

Gordon, K. J. , Fernandez, V. , Townsend, P. D. , Buller, G. S. , "A short wavelength GigaHertz clocked fiber-optic quantum key distribution system," IEEE J. Quantum Electron. 40, 900-908 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. A. Soper, J. H. Flanagan, B. L. Legendre, D. C. Williams, and R. P. Hammer, "Near-infrared, laser-induced fluorescence detection for DNA sequencing applications," IEEE J. Sel. Top. Quantum Electron. 4, 1129-1139 (1996).

IEEE J. Solid-State Circuits

F. Zappa, A. Lotito, A. C. Giudice, S. Cova, and M. Ghioni, "Monolithic active-quenching and active-reset circuit for single-photon avalanche detectors," IEEE J. Solid-State Circuits 38, 1298-1301 (2003).
[CrossRef]

IEEE Photonics Technol. Lett.

P. D. Townsend, "Experimental investigation of the performance limits for first telecommunications-window quantum cryptography systems," IEEE Photonics Technol. Lett. 10, 1048-1050 (1998).
[CrossRef]

IEEE Trans. Electron Devices

F. Stellari, F. Zappa, S. Cova, C. Porta, J. C. Tsang, "High-speed CMOS circuit testing by 50ps time-resolved luminescence measurements," IEEE Trans. Electron Devices 48, 2830-2835 (2001).
[CrossRef]

J. Mod. Opt

J. Mod. Opt 51, 1265-1557 (2004)

J. Mod. Opt.

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, "Evolution and prospects for single-photon avalanche diodes and quenching circuits," J. Mod. Opt. 51, 1267-1288 (2004).

Meas. Sci. Technol.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, "Laser-based distance measurement using picosecond resolution time-correlated single photon counting," Meas. Sci. Technol. 11, 713-716, (2000).
[CrossRef]

Opt. Lett.

Phys. Stat. Sol.

J. A. Kash, J. C. Tsang, Phys. Stat. Sol.(b),  204, 507 (1997).
[CrossRef]

Proc SPIE

W. Becker, A. Bergmann, K. Konig. U. Tirlapur, "Picosecond fluorescence lifetime microscopy by TCSPC imaging," Proc SPIE 4262, 414-419 (2001).
[CrossRef]

Rev. Sci. Instr.

I. Rech, I. Labanca, M. Ghioni and S. Cova, Rev. Sci. Instr. (to be published).

Rev. Sci. Instrum.

L.-Q. Li and L. M. Davis "Single photon avalanche diode for single molecule detection," Rev. Sci. Instrum. 64, 1524-1529 (1993).
[CrossRef]

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. Popovic, G. Ribordy and N. Gisin "Single photon detector fabricated in complementary metal-oxide-semiconductor high-voltage technology," Rev. Sci. Instrum. 74, 3263-3270 (2003).
[CrossRef]

A. Spinelli and L. M. Davis, H. Dautet, "Actively quenched single-photon avalanche diode for high repetition rate time-gated photon counting," Rev. Sci. Instrum. 67, 55-61 (1996).
[CrossRef]

L.-Q. Li and L. M. Davis "Single photon avalanche diode for single molecule detection," Rev. Sci. Instrum. 64, 1524-1529 (1993).
[CrossRef]

S. Cova, A. Longoni, and A. Andreoni, "Towards picosecond resolution with single-photon avalanche diodes," Rev. Sci. Instrum. 52, 408-412 (1981)
[CrossRef]

Science

S. Weiss, "Fluorescence spectroscopy of single biomolecules," Science 283, 1676-1683 (1999).
[CrossRef] [PubMed]

H. Yang, G. Luo, P. Karnchanaphanurach, T.-M. Louie; I. Rech, S. Cova, L. Xun, and X. S. Xie, "Protein conformational dynamics probed by single-molecule electron transfer," Science 302, 262-266 (2003).
[CrossRef] [PubMed]

Other

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques, (Springer, Berlin, 2005).
[CrossRef]

P. Antognetti, S. Cova and A. Longoni, "A study of the operation and performances of an avalanche diode as a single photon detector," in Proc. 2nd Ispra Nuclear Electronics Symposium Stresa May 20-23, Euratom Publication EUR 5370e 453-456 (1975).

Harp 100 from PicoQuant, http://www.photonics.com/spectra/newprods/XQ/ASP/newprodidta.1003/QX/read.htm

TCPC card from Becker-Hickl, http://www.becker-hickl.de/tcspc.htm

A. Spinelli, A. L. Lacaita, "Physics and numerical simulation of single photon avalanche diodes," IEEE Trans. Electron Devices 44, 1931-1943 (1997) and A. Lacaita, (personal communication 1995)
[CrossRef]

D. Y. Kim, O. S. Kwon, and J. H. Bang, "The design of the high speed amplifier circuit for using in the analog subsytems," in Proc. 35th MWSCAS1, Washington DC, USA, 485-488 (1992).

S. Cova, M. Ghioni, and F. Zappa "Circuit for high precision detection of the time of arrival of photons falling on single photon avalanche diodes," US patent No. 6,384,663 B2, May 7, 2002

SPCM-AQR Single Photon Counting Module Data Sheet, Perkin Elmer Optoelectronics Canada Ltd., Vaudreuil, Quebec, Canada; http://optoelectronics.perkinelmer.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Simplified block diagram of the integrated active-quenching and active-reset circuit previously developed by our group.

Fig. 2.
Fig. 2.

Simplified block diagram of the modified i-AQC.

Fig. 3.
Fig. 3.

Simplified schematic of the voltage comparator used in the timing stage.

Fig. 4.
Fig. 4.

Simplified schematic of the active load that replaces the load resistor of the previous i-AQCs.

Fig. 5.
Fig. 5.

Microphotograph of the new i-AQC chip.

Fig. 6.
Fig. 6.

Time resolution curves of a 50 µm SPAD measured at different excess bias voltages by using the output signal from the active quenching circuit (counting out) and the output signal from the timing stage (timing out).

Fig. 7.
Fig. 7.

Cathode voltage recovery at the end of the reset phase observed with the new active load compared to that of the previous circuit with a high-resistance load. The recovery of the voltage overshoot is exponential with a time constant shorter than 100 ns in the case of the active load, whereas the recovery time constant is well over a microsecond for the high-resistance load.

Fig. 8.
Fig. 8.

Time resolution FWHM of a 50 µm SPAD operated at 5 V and 10 V excess bias voltage as a function of the counting rate. Curves are obtained by using the output signal from the active quenching circuit (counting out) and the output signal from the timing stage (timing out). No appreciable degradation of the time resolution is observed for counting rates up to 5 Mcount/s.

Tables (1)

Tables Icon

Table I. Comparison of the time resolution FWHM obtained with SPAD devices having different active area diameters. Devices were operated at room temperature with low counting rate (10 kHz). The two series of results were obtained by operating the SPADs at 5 V and 10 V excess bias voltage and by using the output signal from the active quenching circuit (counting out) and the output signal from the timing stage (timing out).

Metrics