Abstract

We carry out an analysis of an earlier proposed “channelization” architecture for wideband slow light propagation and pulse delays in atomic vapors using electromagnetically induced transparency (EIT). In the channelization architecture, a wideband input signal pulse is spatially dispersed in the transverse dimension, sent through an EIT medium consisting of an initially spin-polarized atomic vapor illuminated by a monochromatic, co-propagating pump laser, then spatially recombined. An inhomogenous magnetic field is used to Zeeman shift the atomic vapor into two-photon (Raman) resonance with the signal-pump transitions at all locations. Extending on previous analyses, we show in detail how the reconstructed pulse will be delayed only if a slight mis-match from the two-photon resonance is introduced. If the desired delay is taken as a constrained parameter, we find the bandwidth can be increased by large factor. We present an analytic treatment which optimizes the bandwidth given a desired delay and constraints on the pump power and focusing. We find bandwidth increases on the order of 5 times (100 MHz versus 20 MHz) should be possible for delays of interest (10 ns) to applications in telecommunications and radar. Interestingly, due to the mis-match requirement, we find the channelization can not increase the optimal delay-bandwidth product over conventional slow light.

©2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of optical ARMA architectures in the slow-light regime

Vishnupriya Govindan and Steve Blair
J. Opt. Soc. Am. B 25(12) C116-C126 (2008)

Controllable ultrabroadband slow light in a warm rubidium vapor

Rui Zhang, Joel A. Greenberg, Martin C. Fischer, and Daniel J. Gauthier
J. Opt. Soc. Am. B 28(11) 2578-2583 (2011)

Slow light propagation in a linear-response three-level atomic vapor

Wenhai Ji, Chunabi Wu, and M. G. Raymer
J. Opt. Soc. Am. B 24(3) 629-635 (2007)

References

  • View by:
  • |
  • |
  • |

  1. I. Frigyes, “Optically generated true-time delay in phased-array antennas,” IEEE Trans. Microwave Theory Tech.,  43, 2378–2386 (1995).
    [Crossref]
  2. J.R. Lowell and E. ParraH.J. Coufal, Z.U. Hasan, and A.E. Craig, “Applications of slow light: a DARPA perspective,” in Advanced Optical and Quantum Memories and Computing II, eds. Proc. SPIE 5735, 80–86 (2005).
    [Crossref]
  3. S.E. Harris, “Electromagnetically induced transparency,” Physics Today 50(7), 36–42 (1997).
    [Crossref]
  4. A. Kasapi, M. Jain, G.Y. Yin, and S.E. Harris “Electromagnetically Induced Transparency: Propagation Dynamics,” Phys. Rev. Lett. 74, 24472450 (1995).
    [Crossref]
  5. L.V. Hau, S.E. Harris, Z. Dutton, and C.H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–597 (1999).
    [Crossref]
  6. M.M. Kash, et al., “Nonlinear Magneto-optics and Reduced Group Velocity of Light in Atomic Vapor with Slow Ground State Relaxation,” Phys. Rev. Lett. 82, 5229–5932 (1999).
    [Crossref]
  7. D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 83, 001767 (1999).
    [Crossref]
  8. A.V. Turukhin, V.S. Sudarshanam, M.S. Shahriar, J.A. Musser, B.S. Ham, and P.R. Hemmer “Observation of Ultraslow and Stored Light Pulses in a Solid,” Phys. Rev. Lett. 88, 023602 (2002).
    [Crossref] [PubMed]
  9. M.S. Bigelow, N.N. Lepeshkin, and R.W. Boyd “Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature,” Phys. Rev. Lett. 90, 113903 (2003).
    [Crossref] [PubMed]
  10. M.O. Scully and M. Fleischhauer, “High-sensitivity magnetometer based on index-enhanced media,” Phys. Rev. Lett. 69, 1360–1363 (1992).
    [Crossref] [PubMed]
  11. M. Bashkansky, G. Beadie, Z. Dutton, F.K. Fatemi, J. Reintjes, and M. Steiner, “Slow light dynamics of large bandwidth pulses in warm rubidium vapor,” Phys. Rev. A 72, 033819 (2005).
    [Crossref]
  12. C.J. Chang-Hasnain, P.-C. Ku, J. Kim, and S.-L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE,  91, 1884–1897 (2003).
    [Crossref]
  13. S.-W. Chang, S.-L. Chuang, P.-C. Ku, C.J. Chang-Hasnian, P. Palinginis, and H. Wang, “Slow light using excitonic population oscillation,” Phys. Rev. B 70, 235333 (2004).
    [Crossref]
  14. Y. Okawachi, et al., “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
    [Crossref] [PubMed]
  15. K.Y. Song, M.G. Herraez, and L. Thevenaz, “Long optically controled delays in optical fibers,” Opt. Lett. 30, 1782–1784 (2005).
    [Crossref] [PubMed]
  16. Z. Dutton, M. Bashkansky, M. Steiner, and J. ReintjesH.J. Coufal, Z.U. Hasan, and A.E. Craig, “Channelization architecture for wide-band slow light in atomic vapors,” in Advanced Optical and Quantum Memories and Computing II, eds. Proc. SPIE 5735, 115–129 (2005).
    [Crossref]
  17. Q. Sun, Y.V. Rostovstev, J.P. Dowling, M.O. Scully, and M.S. Zubairy, “Optically controlled delays for broadband pulses,” Phys. Rev. A 72, 031802R (2005).
    [Crossref]
  18. Z. Deng, D.-K. Qing, P. Hemmer, C.H. Raymond, M.S. Zubairy, and M.O. Scully, “Time-bandwidth problem in room temperature slow light,” Phys. Rev. Lett. 96023602 (2006).
    [Crossref] [PubMed]
  19. J. Remenyi, P. Maak, I. Frigyes, L. Jakob, and P. Richter, “Demonstration of continuously variable true-time delay in frequency dependent phase compensating system with acousto-optic and liquid crystal modulator”, Opt. Comm. 226, 211–220 (2003).
    [Crossref]
  20. S. Brandt, A. Nagel, R. Wynands, and D. Meschede, “Buffer-gas-induced linewidth reduction of coherent dark resonances to below 50 Hz,” Phys. Rev. A 56, R1063–1066 (1997).
    [Crossref]
  21. M.O. Scully and M.S. Zubairy, Quantum Optics, Cambridge Univ. Press, Cambridge, UK (1997).
  22. E.E. Mikhailov, Y.V. Rostovstev, and G.R. Welch, “Group velocity study in hot 87Rb vapour with buffer gas,” J. Mod. Opt. 50, 2645–2654 (2003).
    [Crossref]
  23. D.A. Steck, “Rubidium 87 D Line Data,” http://george.ph.utexas.edu/dsteck/alkalidata/rubidium87numbers.pdf
  24. I. Novikova, M. Klein, D.F. Phillips, and R.L. WalsworthH.J. Coufal, Z.U. Hasan, and A.E. Craig, “Optimimizing stored light efficiency in vapor cells,” in Advanced Optical and Quantum Memories and Computing II, eds. Proc. SPIE 5735, 87–97 (2005).
    [Crossref]
  25. M.D. Rotondaro and G. P. Perram, “Collisional broadening and shift of the Rubidium D1 and D2 lines (52S1/2→52P1/2,52P3/2) by rare gases, H2, D2, N2, CH4, andCF4,” J. Quant. Spectrosc. Radiat. Transfer 57, 497–507 (1997).
    [Crossref]
  26. Y. Xiao, I. Novikova, D.F. Phillips, and R.L. Walsworth, “Diffusion-induced Ramsey narrowing,” Phys. Rev. Lett. 96, 043601 (2006).
    [Crossref] [PubMed]

2006 (2)

Z. Deng, D.-K. Qing, P. Hemmer, C.H. Raymond, M.S. Zubairy, and M.O. Scully, “Time-bandwidth problem in room temperature slow light,” Phys. Rev. Lett. 96023602 (2006).
[Crossref] [PubMed]

Y. Xiao, I. Novikova, D.F. Phillips, and R.L. Walsworth, “Diffusion-induced Ramsey narrowing,” Phys. Rev. Lett. 96, 043601 (2006).
[Crossref] [PubMed]

2005 (7)

I. Novikova, M. Klein, D.F. Phillips, and R.L. WalsworthH.J. Coufal, Z.U. Hasan, and A.E. Craig, “Optimimizing stored light efficiency in vapor cells,” in Advanced Optical and Quantum Memories and Computing II, eds. Proc. SPIE 5735, 87–97 (2005).
[Crossref]

M. Bashkansky, G. Beadie, Z. Dutton, F.K. Fatemi, J. Reintjes, and M. Steiner, “Slow light dynamics of large bandwidth pulses in warm rubidium vapor,” Phys. Rev. A 72, 033819 (2005).
[Crossref]

Y. Okawachi, et al., “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

K.Y. Song, M.G. Herraez, and L. Thevenaz, “Long optically controled delays in optical fibers,” Opt. Lett. 30, 1782–1784 (2005).
[Crossref] [PubMed]

Z. Dutton, M. Bashkansky, M. Steiner, and J. ReintjesH.J. Coufal, Z.U. Hasan, and A.E. Craig, “Channelization architecture for wide-band slow light in atomic vapors,” in Advanced Optical and Quantum Memories and Computing II, eds. Proc. SPIE 5735, 115–129 (2005).
[Crossref]

Q. Sun, Y.V. Rostovstev, J.P. Dowling, M.O. Scully, and M.S. Zubairy, “Optically controlled delays for broadband pulses,” Phys. Rev. A 72, 031802R (2005).
[Crossref]

J.R. Lowell and E. ParraH.J. Coufal, Z.U. Hasan, and A.E. Craig, “Applications of slow light: a DARPA perspective,” in Advanced Optical and Quantum Memories and Computing II, eds. Proc. SPIE 5735, 80–86 (2005).
[Crossref]

2004 (1)

S.-W. Chang, S.-L. Chuang, P.-C. Ku, C.J. Chang-Hasnian, P. Palinginis, and H. Wang, “Slow light using excitonic population oscillation,” Phys. Rev. B 70, 235333 (2004).
[Crossref]

2003 (4)

E.E. Mikhailov, Y.V. Rostovstev, and G.R. Welch, “Group velocity study in hot 87Rb vapour with buffer gas,” J. Mod. Opt. 50, 2645–2654 (2003).
[Crossref]

M.S. Bigelow, N.N. Lepeshkin, and R.W. Boyd “Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

C.J. Chang-Hasnain, P.-C. Ku, J. Kim, and S.-L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE,  91, 1884–1897 (2003).
[Crossref]

J. Remenyi, P. Maak, I. Frigyes, L. Jakob, and P. Richter, “Demonstration of continuously variable true-time delay in frequency dependent phase compensating system with acousto-optic and liquid crystal modulator”, Opt. Comm. 226, 211–220 (2003).
[Crossref]

2002 (1)

A.V. Turukhin, V.S. Sudarshanam, M.S. Shahriar, J.A. Musser, B.S. Ham, and P.R. Hemmer “Observation of Ultraslow and Stored Light Pulses in a Solid,” Phys. Rev. Lett. 88, 023602 (2002).
[Crossref] [PubMed]

1999 (3)

L.V. Hau, S.E. Harris, Z. Dutton, and C.H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–597 (1999).
[Crossref]

M.M. Kash, et al., “Nonlinear Magneto-optics and Reduced Group Velocity of Light in Atomic Vapor with Slow Ground State Relaxation,” Phys. Rev. Lett. 82, 5229–5932 (1999).
[Crossref]

D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 83, 001767 (1999).
[Crossref]

1997 (3)

S.E. Harris, “Electromagnetically induced transparency,” Physics Today 50(7), 36–42 (1997).
[Crossref]

S. Brandt, A. Nagel, R. Wynands, and D. Meschede, “Buffer-gas-induced linewidth reduction of coherent dark resonances to below 50 Hz,” Phys. Rev. A 56, R1063–1066 (1997).
[Crossref]

M.D. Rotondaro and G. P. Perram, “Collisional broadening and shift of the Rubidium D1 and D2 lines (52S1/2→52P1/2,52P3/2) by rare gases, H2, D2, N2, CH4, andCF4,” J. Quant. Spectrosc. Radiat. Transfer 57, 497–507 (1997).
[Crossref]

1995 (2)

A. Kasapi, M. Jain, G.Y. Yin, and S.E. Harris “Electromagnetically Induced Transparency: Propagation Dynamics,” Phys. Rev. Lett. 74, 24472450 (1995).
[Crossref]

I. Frigyes, “Optically generated true-time delay in phased-array antennas,” IEEE Trans. Microwave Theory Tech.,  43, 2378–2386 (1995).
[Crossref]

1992 (1)

M.O. Scully and M. Fleischhauer, “High-sensitivity magnetometer based on index-enhanced media,” Phys. Rev. Lett. 69, 1360–1363 (1992).
[Crossref] [PubMed]

Bashkansky, M.

M. Bashkansky, G. Beadie, Z. Dutton, F.K. Fatemi, J. Reintjes, and M. Steiner, “Slow light dynamics of large bandwidth pulses in warm rubidium vapor,” Phys. Rev. A 72, 033819 (2005).
[Crossref]

Z. Dutton, M. Bashkansky, M. Steiner, and J. ReintjesH.J. Coufal, Z.U. Hasan, and A.E. Craig, “Channelization architecture for wide-band slow light in atomic vapors,” in Advanced Optical and Quantum Memories and Computing II, eds. Proc. SPIE 5735, 115–129 (2005).
[Crossref]

Beadie, G.

M. Bashkansky, G. Beadie, Z. Dutton, F.K. Fatemi, J. Reintjes, and M. Steiner, “Slow light dynamics of large bandwidth pulses in warm rubidium vapor,” Phys. Rev. A 72, 033819 (2005).
[Crossref]

Behroozi, C.H.

L.V. Hau, S.E. Harris, Z. Dutton, and C.H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–597 (1999).
[Crossref]

Bigelow, M.S.

M.S. Bigelow, N.N. Lepeshkin, and R.W. Boyd “Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

Boyd, R.W.

M.S. Bigelow, N.N. Lepeshkin, and R.W. Boyd “Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

Brandt, S.

S. Brandt, A. Nagel, R. Wynands, and D. Meschede, “Buffer-gas-induced linewidth reduction of coherent dark resonances to below 50 Hz,” Phys. Rev. A 56, R1063–1066 (1997).
[Crossref]

Budker, D.

D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 83, 001767 (1999).
[Crossref]

Chang, S.-W.

S.-W. Chang, S.-L. Chuang, P.-C. Ku, C.J. Chang-Hasnian, P. Palinginis, and H. Wang, “Slow light using excitonic population oscillation,” Phys. Rev. B 70, 235333 (2004).
[Crossref]

Chang-Hasnain, C.J.

C.J. Chang-Hasnain, P.-C. Ku, J. Kim, and S.-L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE,  91, 1884–1897 (2003).
[Crossref]

Chang-Hasnian, C.J.

S.-W. Chang, S.-L. Chuang, P.-C. Ku, C.J. Chang-Hasnian, P. Palinginis, and H. Wang, “Slow light using excitonic population oscillation,” Phys. Rev. B 70, 235333 (2004).
[Crossref]

Chuang, S.-L.

S.-W. Chang, S.-L. Chuang, P.-C. Ku, C.J. Chang-Hasnian, P. Palinginis, and H. Wang, “Slow light using excitonic population oscillation,” Phys. Rev. B 70, 235333 (2004).
[Crossref]

C.J. Chang-Hasnain, P.-C. Ku, J. Kim, and S.-L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE,  91, 1884–1897 (2003).
[Crossref]

Deng, Z.

Z. Deng, D.-K. Qing, P. Hemmer, C.H. Raymond, M.S. Zubairy, and M.O. Scully, “Time-bandwidth problem in room temperature slow light,” Phys. Rev. Lett. 96023602 (2006).
[Crossref] [PubMed]

Dowling, J.P.

Q. Sun, Y.V. Rostovstev, J.P. Dowling, M.O. Scully, and M.S. Zubairy, “Optically controlled delays for broadband pulses,” Phys. Rev. A 72, 031802R (2005).
[Crossref]

Dutton, Z.

Z. Dutton, M. Bashkansky, M. Steiner, and J. ReintjesH.J. Coufal, Z.U. Hasan, and A.E. Craig, “Channelization architecture for wide-band slow light in atomic vapors,” in Advanced Optical and Quantum Memories and Computing II, eds. Proc. SPIE 5735, 115–129 (2005).
[Crossref]

M. Bashkansky, G. Beadie, Z. Dutton, F.K. Fatemi, J. Reintjes, and M. Steiner, “Slow light dynamics of large bandwidth pulses in warm rubidium vapor,” Phys. Rev. A 72, 033819 (2005).
[Crossref]

L.V. Hau, S.E. Harris, Z. Dutton, and C.H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–597 (1999).
[Crossref]

Fatemi, F.K.

M. Bashkansky, G. Beadie, Z. Dutton, F.K. Fatemi, J. Reintjes, and M. Steiner, “Slow light dynamics of large bandwidth pulses in warm rubidium vapor,” Phys. Rev. A 72, 033819 (2005).
[Crossref]

Fleischhauer, M.

M.O. Scully and M. Fleischhauer, “High-sensitivity magnetometer based on index-enhanced media,” Phys. Rev. Lett. 69, 1360–1363 (1992).
[Crossref] [PubMed]

Frigyes, I.

J. Remenyi, P. Maak, I. Frigyes, L. Jakob, and P. Richter, “Demonstration of continuously variable true-time delay in frequency dependent phase compensating system with acousto-optic and liquid crystal modulator”, Opt. Comm. 226, 211–220 (2003).
[Crossref]

I. Frigyes, “Optically generated true-time delay in phased-array antennas,” IEEE Trans. Microwave Theory Tech.,  43, 2378–2386 (1995).
[Crossref]

Ham, B.S.

A.V. Turukhin, V.S. Sudarshanam, M.S. Shahriar, J.A. Musser, B.S. Ham, and P.R. Hemmer “Observation of Ultraslow and Stored Light Pulses in a Solid,” Phys. Rev. Lett. 88, 023602 (2002).
[Crossref] [PubMed]

Harris, S.E.

L.V. Hau, S.E. Harris, Z. Dutton, and C.H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–597 (1999).
[Crossref]

S.E. Harris, “Electromagnetically induced transparency,” Physics Today 50(7), 36–42 (1997).
[Crossref]

A. Kasapi, M. Jain, G.Y. Yin, and S.E. Harris “Electromagnetically Induced Transparency: Propagation Dynamics,” Phys. Rev. Lett. 74, 24472450 (1995).
[Crossref]

Hau, L.V.

L.V. Hau, S.E. Harris, Z. Dutton, and C.H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–597 (1999).
[Crossref]

Hemmer, P.

Z. Deng, D.-K. Qing, P. Hemmer, C.H. Raymond, M.S. Zubairy, and M.O. Scully, “Time-bandwidth problem in room temperature slow light,” Phys. Rev. Lett. 96023602 (2006).
[Crossref] [PubMed]

Hemmer, P.R.

A.V. Turukhin, V.S. Sudarshanam, M.S. Shahriar, J.A. Musser, B.S. Ham, and P.R. Hemmer “Observation of Ultraslow and Stored Light Pulses in a Solid,” Phys. Rev. Lett. 88, 023602 (2002).
[Crossref] [PubMed]

Herraez, M.G.

Jain, M.

A. Kasapi, M. Jain, G.Y. Yin, and S.E. Harris “Electromagnetically Induced Transparency: Propagation Dynamics,” Phys. Rev. Lett. 74, 24472450 (1995).
[Crossref]

Jakob, L.

J. Remenyi, P. Maak, I. Frigyes, L. Jakob, and P. Richter, “Demonstration of continuously variable true-time delay in frequency dependent phase compensating system with acousto-optic and liquid crystal modulator”, Opt. Comm. 226, 211–220 (2003).
[Crossref]

Kasapi, A.

A. Kasapi, M. Jain, G.Y. Yin, and S.E. Harris “Electromagnetically Induced Transparency: Propagation Dynamics,” Phys. Rev. Lett. 74, 24472450 (1995).
[Crossref]

Kash, M.M.

M.M. Kash, et al., “Nonlinear Magneto-optics and Reduced Group Velocity of Light in Atomic Vapor with Slow Ground State Relaxation,” Phys. Rev. Lett. 82, 5229–5932 (1999).
[Crossref]

Kim, J.

C.J. Chang-Hasnain, P.-C. Ku, J. Kim, and S.-L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE,  91, 1884–1897 (2003).
[Crossref]

Kimball, D. F.

D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 83, 001767 (1999).
[Crossref]

Klein, M.

I. Novikova, M. Klein, D.F. Phillips, and R.L. WalsworthH.J. Coufal, Z.U. Hasan, and A.E. Craig, “Optimimizing stored light efficiency in vapor cells,” in Advanced Optical and Quantum Memories and Computing II, eds. Proc. SPIE 5735, 87–97 (2005).
[Crossref]

Ku, P.-C.

S.-W. Chang, S.-L. Chuang, P.-C. Ku, C.J. Chang-Hasnian, P. Palinginis, and H. Wang, “Slow light using excitonic population oscillation,” Phys. Rev. B 70, 235333 (2004).
[Crossref]

C.J. Chang-Hasnain, P.-C. Ku, J. Kim, and S.-L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE,  91, 1884–1897 (2003).
[Crossref]

Lepeshkin, N.N.

M.S. Bigelow, N.N. Lepeshkin, and R.W. Boyd “Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

Lowell, J.R.

J.R. Lowell and E. ParraH.J. Coufal, Z.U. Hasan, and A.E. Craig, “Applications of slow light: a DARPA perspective,” in Advanced Optical and Quantum Memories and Computing II, eds. Proc. SPIE 5735, 80–86 (2005).
[Crossref]

Maak, P.

J. Remenyi, P. Maak, I. Frigyes, L. Jakob, and P. Richter, “Demonstration of continuously variable true-time delay in frequency dependent phase compensating system with acousto-optic and liquid crystal modulator”, Opt. Comm. 226, 211–220 (2003).
[Crossref]

Meschede, D.

S. Brandt, A. Nagel, R. Wynands, and D. Meschede, “Buffer-gas-induced linewidth reduction of coherent dark resonances to below 50 Hz,” Phys. Rev. A 56, R1063–1066 (1997).
[Crossref]

Mikhailov, E.E.

E.E. Mikhailov, Y.V. Rostovstev, and G.R. Welch, “Group velocity study in hot 87Rb vapour with buffer gas,” J. Mod. Opt. 50, 2645–2654 (2003).
[Crossref]

Musser, J.A.

A.V. Turukhin, V.S. Sudarshanam, M.S. Shahriar, J.A. Musser, B.S. Ham, and P.R. Hemmer “Observation of Ultraslow and Stored Light Pulses in a Solid,” Phys. Rev. Lett. 88, 023602 (2002).
[Crossref] [PubMed]

Nagel, A.

S. Brandt, A. Nagel, R. Wynands, and D. Meschede, “Buffer-gas-induced linewidth reduction of coherent dark resonances to below 50 Hz,” Phys. Rev. A 56, R1063–1066 (1997).
[Crossref]

Novikova, I.

Y. Xiao, I. Novikova, D.F. Phillips, and R.L. Walsworth, “Diffusion-induced Ramsey narrowing,” Phys. Rev. Lett. 96, 043601 (2006).
[Crossref] [PubMed]

I. Novikova, M. Klein, D.F. Phillips, and R.L. WalsworthH.J. Coufal, Z.U. Hasan, and A.E. Craig, “Optimimizing stored light efficiency in vapor cells,” in Advanced Optical and Quantum Memories and Computing II, eds. Proc. SPIE 5735, 87–97 (2005).
[Crossref]

Okawachi, Y.

Y. Okawachi, et al., “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

Palinginis, P.

S.-W. Chang, S.-L. Chuang, P.-C. Ku, C.J. Chang-Hasnian, P. Palinginis, and H. Wang, “Slow light using excitonic population oscillation,” Phys. Rev. B 70, 235333 (2004).
[Crossref]

Parra, E.

J.R. Lowell and E. ParraH.J. Coufal, Z.U. Hasan, and A.E. Craig, “Applications of slow light: a DARPA perspective,” in Advanced Optical and Quantum Memories and Computing II, eds. Proc. SPIE 5735, 80–86 (2005).
[Crossref]

Perram, G. P.

M.D. Rotondaro and G. P. Perram, “Collisional broadening and shift of the Rubidium D1 and D2 lines (52S1/2→52P1/2,52P3/2) by rare gases, H2, D2, N2, CH4, andCF4,” J. Quant. Spectrosc. Radiat. Transfer 57, 497–507 (1997).
[Crossref]

Phillips, D.F.

Y. Xiao, I. Novikova, D.F. Phillips, and R.L. Walsworth, “Diffusion-induced Ramsey narrowing,” Phys. Rev. Lett. 96, 043601 (2006).
[Crossref] [PubMed]

I. Novikova, M. Klein, D.F. Phillips, and R.L. WalsworthH.J. Coufal, Z.U. Hasan, and A.E. Craig, “Optimimizing stored light efficiency in vapor cells,” in Advanced Optical and Quantum Memories and Computing II, eds. Proc. SPIE 5735, 87–97 (2005).
[Crossref]

Qing, D.-K.

Z. Deng, D.-K. Qing, P. Hemmer, C.H. Raymond, M.S. Zubairy, and M.O. Scully, “Time-bandwidth problem in room temperature slow light,” Phys. Rev. Lett. 96023602 (2006).
[Crossref] [PubMed]

Raymond, C.H.

Z. Deng, D.-K. Qing, P. Hemmer, C.H. Raymond, M.S. Zubairy, and M.O. Scully, “Time-bandwidth problem in room temperature slow light,” Phys. Rev. Lett. 96023602 (2006).
[Crossref] [PubMed]

Reintjes, J.

Z. Dutton, M. Bashkansky, M. Steiner, and J. ReintjesH.J. Coufal, Z.U. Hasan, and A.E. Craig, “Channelization architecture for wide-band slow light in atomic vapors,” in Advanced Optical and Quantum Memories and Computing II, eds. Proc. SPIE 5735, 115–129 (2005).
[Crossref]

M. Bashkansky, G. Beadie, Z. Dutton, F.K. Fatemi, J. Reintjes, and M. Steiner, “Slow light dynamics of large bandwidth pulses in warm rubidium vapor,” Phys. Rev. A 72, 033819 (2005).
[Crossref]

Remenyi, J.

J. Remenyi, P. Maak, I. Frigyes, L. Jakob, and P. Richter, “Demonstration of continuously variable true-time delay in frequency dependent phase compensating system with acousto-optic and liquid crystal modulator”, Opt. Comm. 226, 211–220 (2003).
[Crossref]

Richter, P.

J. Remenyi, P. Maak, I. Frigyes, L. Jakob, and P. Richter, “Demonstration of continuously variable true-time delay in frequency dependent phase compensating system with acousto-optic and liquid crystal modulator”, Opt. Comm. 226, 211–220 (2003).
[Crossref]

Rochester, S. M.

D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 83, 001767 (1999).
[Crossref]

Rostovstev, Y.V.

Q. Sun, Y.V. Rostovstev, J.P. Dowling, M.O. Scully, and M.S. Zubairy, “Optically controlled delays for broadband pulses,” Phys. Rev. A 72, 031802R (2005).
[Crossref]

E.E. Mikhailov, Y.V. Rostovstev, and G.R. Welch, “Group velocity study in hot 87Rb vapour with buffer gas,” J. Mod. Opt. 50, 2645–2654 (2003).
[Crossref]

Rotondaro, M.D.

M.D. Rotondaro and G. P. Perram, “Collisional broadening and shift of the Rubidium D1 and D2 lines (52S1/2→52P1/2,52P3/2) by rare gases, H2, D2, N2, CH4, andCF4,” J. Quant. Spectrosc. Radiat. Transfer 57, 497–507 (1997).
[Crossref]

Scully, M.O.

Z. Deng, D.-K. Qing, P. Hemmer, C.H. Raymond, M.S. Zubairy, and M.O. Scully, “Time-bandwidth problem in room temperature slow light,” Phys. Rev. Lett. 96023602 (2006).
[Crossref] [PubMed]

Q. Sun, Y.V. Rostovstev, J.P. Dowling, M.O. Scully, and M.S. Zubairy, “Optically controlled delays for broadband pulses,” Phys. Rev. A 72, 031802R (2005).
[Crossref]

M.O. Scully and M. Fleischhauer, “High-sensitivity magnetometer based on index-enhanced media,” Phys. Rev. Lett. 69, 1360–1363 (1992).
[Crossref] [PubMed]

M.O. Scully and M.S. Zubairy, Quantum Optics, Cambridge Univ. Press, Cambridge, UK (1997).

Shahriar, M.S.

A.V. Turukhin, V.S. Sudarshanam, M.S. Shahriar, J.A. Musser, B.S. Ham, and P.R. Hemmer “Observation of Ultraslow and Stored Light Pulses in a Solid,” Phys. Rev. Lett. 88, 023602 (2002).
[Crossref] [PubMed]

Song, K.Y.

Steck, D.A.

D.A. Steck, “Rubidium 87 D Line Data,” http://george.ph.utexas.edu/dsteck/alkalidata/rubidium87numbers.pdf

Steiner, M.

Z. Dutton, M. Bashkansky, M. Steiner, and J. ReintjesH.J. Coufal, Z.U. Hasan, and A.E. Craig, “Channelization architecture for wide-band slow light in atomic vapors,” in Advanced Optical and Quantum Memories and Computing II, eds. Proc. SPIE 5735, 115–129 (2005).
[Crossref]

M. Bashkansky, G. Beadie, Z. Dutton, F.K. Fatemi, J. Reintjes, and M. Steiner, “Slow light dynamics of large bandwidth pulses in warm rubidium vapor,” Phys. Rev. A 72, 033819 (2005).
[Crossref]

Sudarshanam, V.S.

A.V. Turukhin, V.S. Sudarshanam, M.S. Shahriar, J.A. Musser, B.S. Ham, and P.R. Hemmer “Observation of Ultraslow and Stored Light Pulses in a Solid,” Phys. Rev. Lett. 88, 023602 (2002).
[Crossref] [PubMed]

Sun, Q.

Q. Sun, Y.V. Rostovstev, J.P. Dowling, M.O. Scully, and M.S. Zubairy, “Optically controlled delays for broadband pulses,” Phys. Rev. A 72, 031802R (2005).
[Crossref]

Thevenaz, L.

Turukhin, A.V.

A.V. Turukhin, V.S. Sudarshanam, M.S. Shahriar, J.A. Musser, B.S. Ham, and P.R. Hemmer “Observation of Ultraslow and Stored Light Pulses in a Solid,” Phys. Rev. Lett. 88, 023602 (2002).
[Crossref] [PubMed]

Walsworth, R.L.

Y. Xiao, I. Novikova, D.F. Phillips, and R.L. Walsworth, “Diffusion-induced Ramsey narrowing,” Phys. Rev. Lett. 96, 043601 (2006).
[Crossref] [PubMed]

I. Novikova, M. Klein, D.F. Phillips, and R.L. WalsworthH.J. Coufal, Z.U. Hasan, and A.E. Craig, “Optimimizing stored light efficiency in vapor cells,” in Advanced Optical and Quantum Memories and Computing II, eds. Proc. SPIE 5735, 87–97 (2005).
[Crossref]

Wang, H.

S.-W. Chang, S.-L. Chuang, P.-C. Ku, C.J. Chang-Hasnian, P. Palinginis, and H. Wang, “Slow light using excitonic population oscillation,” Phys. Rev. B 70, 235333 (2004).
[Crossref]

Welch, G.R.

E.E. Mikhailov, Y.V. Rostovstev, and G.R. Welch, “Group velocity study in hot 87Rb vapour with buffer gas,” J. Mod. Opt. 50, 2645–2654 (2003).
[Crossref]

Wynands, R.

S. Brandt, A. Nagel, R. Wynands, and D. Meschede, “Buffer-gas-induced linewidth reduction of coherent dark resonances to below 50 Hz,” Phys. Rev. A 56, R1063–1066 (1997).
[Crossref]

Xiao, Y.

Y. Xiao, I. Novikova, D.F. Phillips, and R.L. Walsworth, “Diffusion-induced Ramsey narrowing,” Phys. Rev. Lett. 96, 043601 (2006).
[Crossref] [PubMed]

Yashchuk, V. V.

D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 83, 001767 (1999).
[Crossref]

Yin, G.Y.

A. Kasapi, M. Jain, G.Y. Yin, and S.E. Harris “Electromagnetically Induced Transparency: Propagation Dynamics,” Phys. Rev. Lett. 74, 24472450 (1995).
[Crossref]

Zubairy, M.S.

Z. Deng, D.-K. Qing, P. Hemmer, C.H. Raymond, M.S. Zubairy, and M.O. Scully, “Time-bandwidth problem in room temperature slow light,” Phys. Rev. Lett. 96023602 (2006).
[Crossref] [PubMed]

Q. Sun, Y.V. Rostovstev, J.P. Dowling, M.O. Scully, and M.S. Zubairy, “Optically controlled delays for broadband pulses,” Phys. Rev. A 72, 031802R (2005).
[Crossref]

M.O. Scully and M.S. Zubairy, Quantum Optics, Cambridge Univ. Press, Cambridge, UK (1997).

IEEE Trans. Microwave Theory Tech. (1)

I. Frigyes, “Optically generated true-time delay in phased-array antennas,” IEEE Trans. Microwave Theory Tech.,  43, 2378–2386 (1995).
[Crossref]

J. Mod. Opt. (1)

E.E. Mikhailov, Y.V. Rostovstev, and G.R. Welch, “Group velocity study in hot 87Rb vapour with buffer gas,” J. Mod. Opt. 50, 2645–2654 (2003).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

M.D. Rotondaro and G. P. Perram, “Collisional broadening and shift of the Rubidium D1 and D2 lines (52S1/2→52P1/2,52P3/2) by rare gases, H2, D2, N2, CH4, andCF4,” J. Quant. Spectrosc. Radiat. Transfer 57, 497–507 (1997).
[Crossref]

Nature (1)

L.V. Hau, S.E. Harris, Z. Dutton, and C.H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–597 (1999).
[Crossref]

Opt. Comm. (1)

J. Remenyi, P. Maak, I. Frigyes, L. Jakob, and P. Richter, “Demonstration of continuously variable true-time delay in frequency dependent phase compensating system with acousto-optic and liquid crystal modulator”, Opt. Comm. 226, 211–220 (2003).
[Crossref]

Opt. Lett. (1)

Phys. Rev. A (3)

Q. Sun, Y.V. Rostovstev, J.P. Dowling, M.O. Scully, and M.S. Zubairy, “Optically controlled delays for broadband pulses,” Phys. Rev. A 72, 031802R (2005).
[Crossref]

M. Bashkansky, G. Beadie, Z. Dutton, F.K. Fatemi, J. Reintjes, and M. Steiner, “Slow light dynamics of large bandwidth pulses in warm rubidium vapor,” Phys. Rev. A 72, 033819 (2005).
[Crossref]

S. Brandt, A. Nagel, R. Wynands, and D. Meschede, “Buffer-gas-induced linewidth reduction of coherent dark resonances to below 50 Hz,” Phys. Rev. A 56, R1063–1066 (1997).
[Crossref]

Phys. Rev. B (1)

S.-W. Chang, S.-L. Chuang, P.-C. Ku, C.J. Chang-Hasnian, P. Palinginis, and H. Wang, “Slow light using excitonic population oscillation,” Phys. Rev. B 70, 235333 (2004).
[Crossref]

Phys. Rev. Lett. (9)

Y. Okawachi, et al., “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

Z. Deng, D.-K. Qing, P. Hemmer, C.H. Raymond, M.S. Zubairy, and M.O. Scully, “Time-bandwidth problem in room temperature slow light,” Phys. Rev. Lett. 96023602 (2006).
[Crossref] [PubMed]

M.M. Kash, et al., “Nonlinear Magneto-optics and Reduced Group Velocity of Light in Atomic Vapor with Slow Ground State Relaxation,” Phys. Rev. Lett. 82, 5229–5932 (1999).
[Crossref]

D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 83, 001767 (1999).
[Crossref]

A.V. Turukhin, V.S. Sudarshanam, M.S. Shahriar, J.A. Musser, B.S. Ham, and P.R. Hemmer “Observation of Ultraslow and Stored Light Pulses in a Solid,” Phys. Rev. Lett. 88, 023602 (2002).
[Crossref] [PubMed]

M.S. Bigelow, N.N. Lepeshkin, and R.W. Boyd “Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

M.O. Scully and M. Fleischhauer, “High-sensitivity magnetometer based on index-enhanced media,” Phys. Rev. Lett. 69, 1360–1363 (1992).
[Crossref] [PubMed]

A. Kasapi, M. Jain, G.Y. Yin, and S.E. Harris “Electromagnetically Induced Transparency: Propagation Dynamics,” Phys. Rev. Lett. 74, 24472450 (1995).
[Crossref]

Y. Xiao, I. Novikova, D.F. Phillips, and R.L. Walsworth, “Diffusion-induced Ramsey narrowing,” Phys. Rev. Lett. 96, 043601 (2006).
[Crossref] [PubMed]

Physics Today (1)

S.E. Harris, “Electromagnetically induced transparency,” Physics Today 50(7), 36–42 (1997).
[Crossref]

Proc. IEEE (1)

C.J. Chang-Hasnain, P.-C. Ku, J. Kim, and S.-L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE,  91, 1884–1897 (2003).
[Crossref]

Proc. SPIE (3)

Z. Dutton, M. Bashkansky, M. Steiner, and J. ReintjesH.J. Coufal, Z.U. Hasan, and A.E. Craig, “Channelization architecture for wide-band slow light in atomic vapors,” in Advanced Optical and Quantum Memories and Computing II, eds. Proc. SPIE 5735, 115–129 (2005).
[Crossref]

J.R. Lowell and E. ParraH.J. Coufal, Z.U. Hasan, and A.E. Craig, “Applications of slow light: a DARPA perspective,” in Advanced Optical and Quantum Memories and Computing II, eds. Proc. SPIE 5735, 80–86 (2005).
[Crossref]

I. Novikova, M. Klein, D.F. Phillips, and R.L. WalsworthH.J. Coufal, Z.U. Hasan, and A.E. Craig, “Optimimizing stored light efficiency in vapor cells,” in Advanced Optical and Quantum Memories and Computing II, eds. Proc. SPIE 5735, 87–97 (2005).
[Crossref]

Other (2)

M.O. Scully and M.S. Zubairy, Quantum Optics, Cambridge Univ. Press, Cambridge, UK (1997).

D.A. Steck, “Rubidium 87 D Line Data,” http://george.ph.utexas.edu/dsteck/alkalidata/rubidium87numbers.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Schematic of the channelization architecture. A wideband sigal pulse at Point A is spatially dispersed (e.g. via prisms) such that frequency components are displaced in the x direction by an amount proportional the frequency offset from the central carrier frequency (Point B), so the dispersed pulse covers a spatial width W. The dispersed signal then enters a Rb-87 cell illuminated by a monochromatic pump field and propagates with slow group velocity to Point C. A transversely varying longitudinal magnetic field is chosen to match the two-photon resonance at each position x. The dispersing process is reversed to recombine the frequency components of the pulse at Point D. (b) Schematic of particular energy levels used. Note the population is taken to be initially purely in a particular Zeeman sublevel (|1〉 indicated by the circle) so a nearly ideal 3-level Λ results. The pump field Ωp is on the bare resonance of |2〉↔|3〉, with the bare levels indicated by dotted lines. The green bars show the Zeeman shifts introduced to the sublevels for a positive magnetic field Bz . The Lande-g factors for each hyperfine level gF are indicated. The frequency of signal pulse Ω s will depend on the position x, due to the transverse dispersion.
Fig. 2.
Fig. 2. (a) Imaginary part of the susceptibility (Eq. (9) calculated according to the method outlined in Section 3) versus signal frequency with Bz =0 G (black) and Bz =30 G. The insets zoom in on the EIT resonance at each value of Bz . The solid curves show the homogeneous field case, while the dark and light dots show the cases with gradients SB /µB=3 G/mm and SB /µB =10 G/mm, respectively. The pump is chosen to be 50 mW/cm2. The buffer gas pressure is p=30 Torr, for which Dg =5 cm2/s. (b) Real part of the susceptibility.
Fig. 3.
Fig. 3. (a) The relative transparency parameter R EITa/a p0=0 versus the magnetic field gradient SB . The red (blue) dots show the case for pump power 120 mW/cm2 (60 mW/cm2) and p=30 Torr buffer gas pressure. The solid curves show the prediction Eq. (10). (b) R EIT versus buffer gas pressure p for pump intensity 120 mW/cm2 and SB =4 G/mm (red), 40 mW/cm2 and SB =2 G/mm (green), 120 mW/cm2 and SB =8 G/mm (blue). (c) The slope at the EIT resonance s versus SB for the same powers as in (a). The solid curves show the analytic estimate described in the text. (d) The curvature in the absorption profile at the resonance w for the same cases.
Fig. 4.
Fig. 4. The maximum bandwidth B ch Eq. (12) versus the chosen delay τD(0) . In the blue curves, we hold the the slope SB =1 G/mm constant while adjusting W (both for γ coh=0 (dotted) and γ coh=1 kHz (solid)). In the red curves, we hold W=4 mm while adjusting SB . In both cases, the beam height H=0.5 mm and the total pump power is 10 mW. For comparison, the black curve shows the bandwidth for a conventional slow light system, with a pump of the same power focused to an area W=H=0.5 mm. Inset: The delay-bandwidth product versus desired delay for the same parameters (note the larger range of delays).

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

Ω ˜ s ( A ) ( x , δ s ) = τ Ω s 0 exp ( x 2 2 σ 2 δ s 2 τ 2 2 )
Ω ˜ s ( B ) ( x , δ s ) = Ω ˜ s ( A ) ( x δ s S d , δ s )
= τ Ω s 0 exp ( ( x δ s S d ) 2 2 σ 2 δ s 2 τ 2 2 )
χ I ( D ) a + ( δ s S B x ) 2 w 2
χ R ( D ) s ( δ s S B x )
Ω ˜ s ( C ) ( x , δ s ) = Ω ˜ s ( B ) ( x , δ s ) exp [ ( i χ R ( D ) ( δ s ) χ I ( D ) ( δ s ) ) D ]
= τ Ω s 0 exp [ ( x δ s S d ) 2 2 σ 2 δ s 2 τ 2 2 a D
+ i s D ( δ s S B x ) D ( δ s S B x ) 2 w 2 ]
Ω ˜ s ( D ) ( x , δ s ) = Ω ˜ s ( C ) ( x + δ s S d , δ s )
= τ Ω s 0 exp [ x 2 2 σ 2 δ 2 τ 2 2 a D
+ i s D ( δ s ( 1 S B S d ) S B x ) ( δ s ( 1 S B S d ) S B x ) 2 w 2 D ]
ρ ˙ = 𝓜 ̂ ρ + S + D g 3 S B 2 μ B 2 2 B z 2 ρ ;
𝓜 ̂ ( i ( Δ s Δ p + Δ Z ( 1 ) Δ Z ( 2 ) ) γ coh i 2 Ω p * i 2 Ω p i ( Δ s + Δ Z ( 1 ) Δ Z ( 3 ) S p ( e ) + δ D ) γ e ) ,
S ( 0 , i 2 Ω s ) T
ρ ˜ ( ss ) = ρ ˜ ( 0 ) + S B 2 μ B 2 D g 3 ̂ ˜ 1 2 B z 2 ρ ˜ ( 0 )
ρ ˜ ( δ s , δ D , B ) = d δ B 1 π Δ B ρ ˜ ( 0 ) ( δ s , δ D , B z + δ B ) Exp ( δ B 2 Δ B 2 )
where Δ B 2 = 4 D g S B 2 3 j λ j a j v j j λ j v j ,
z Ω ˜ s = i 2 N f 13 σ χ ( D ) ( Δ ̅ s ) Ω ˜ s
where χ ( D ) ( δ s ) = Γ r Ω ˜ s ρ ˜ 31 ( D )
a anal = 64 D g 3 S B 2 Γ r ( γ e 2 + Δ D 2 2 ) Ω p 6 + γ coh Γ r Ω p 2 .
B conv = P 8 W H γ e τ d ( 0 )
B ch = S B W = ( P 3 32 γ e τ d ( 0 ) [ C D g S B 2 W 3 H 3 ( γ e 2 + Δ D 2 2 ) + γ coh P 2 W H ] ) 1 2

Metrics