Abstract

We present a novel configuration of a magneto-optical trap for cold atoms. The trap is very simple in design, employing only a small permanent magnet and an external Helmholtz bias coil. The trap’s principal advantage is that the entire volume of the overlapping laser beams can be used for atom guiding and manipulation. An especially interesting effect is the rotation of the trapped atoms in circular motion as the permanent magnet is rotated. Clouds containing on the order of 2*106 atoms are rotated up to 60Hz forming a 5 mm diameter ring. This rotation can potentially be used in studying the behavior of cold atoms in 2-dimensional potential as well as applications for rotational sensors. We also present a classical theoretical model to simulate the experiment.

©2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A controllable double-well magneto-optical trap for Rb and Cs atoms

C. T. Lin, C. R. Chen, I. H. Yang, Jianping Yin, and D. J. Han
Opt. Express 16(9) 6104-6111 (2008)

Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density

Yen-Wei Lin, Hung-Chih Chou, Prashant P. Dwivedi, Ying-Cheng Chen, and Ite A. Yu
Opt. Express 16(6) 3753-3761 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Sauer, M. D. Barrett, and M. S. Chapman, “Storage ring for neutral atoms,” Phys. Rev. Lett. 87, 270401 (2001).
    [Crossref]
  2. S. Gupta, K. W. Murch, K. L. Moore, T. P. Purdy, and D. M. Stamper-Kurn, “Bose-Einstein condensation in a circular waveguide,” Phys. Rev. Lett. 95, 143201 (2005).
    [Crossref] [PubMed]
  3. D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, “Guiding neutral atoms around curves with lithographically patterned current-carrying wires,” Phys. Rev. Lett. 83, 5194–5197 (1999).
    [Crossref]
  4. N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndic, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124–1127 (2000).
    [Crossref] [PubMed]
  5. M. Key, I. Hughes, W. Rooijakkers, B. Sauer, and E. Hinds, “Propagation of cold atoms along a miniature magnetic guide,” Phys. Rev. Lett. 84, 1371–1373 (2000).
    [Crossref] [PubMed]
  6. B. K. Teo and G. Raithel, “Loading mechanism for atomic guides,” Phys. Rev. A 63, 031402 (2001).
    [Crossref]
  7. D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam splitter for guided atoms,” Phys. Rev. Lett. 85, 5483–5487 (2000).
    [Crossref]
  8. D. Müller, E. Cornell, M. Prevedelli, P. Schwindt, A. Zozulya, and D. Anderson, “Waveguide atom beam splitter for laser-cooled neutral atoms,” Opt. Lett. 25, 1382–1384 (2000).
    [Crossref]
  9. W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hänsch, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86, 608–611 (2001).
    [Crossref] [PubMed]
  10. R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: atom chips,” Phys. Rev. Lett. 84, 4749–4752 (2000).
    [Crossref] [PubMed]
  11. J. Fortagh, H. Ott, S. Kraft, A. Gunther, and C. Zimmermann, “Bose-Einstein condensates in magnetic waveguides,” Appl. Phys. B 76, 157–163 (2003).
    [Crossref]
  12. Y.-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
    [Crossref] [PubMed]
  13. T. L. Gustavson, P. Bouyer, and M. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lett. 78, 2046–2049 (1997).
    [Crossref]

2005 (2)

S. Gupta, K. W. Murch, K. L. Moore, T. P. Purdy, and D. M. Stamper-Kurn, “Bose-Einstein condensation in a circular waveguide,” Phys. Rev. Lett. 95, 143201 (2005).
[Crossref] [PubMed]

Y.-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[Crossref] [PubMed]

2003 (1)

J. Fortagh, H. Ott, S. Kraft, A. Gunther, and C. Zimmermann, “Bose-Einstein condensates in magnetic waveguides,” Appl. Phys. B 76, 157–163 (2003).
[Crossref]

2001 (3)

J. A. Sauer, M. D. Barrett, and M. S. Chapman, “Storage ring for neutral atoms,” Phys. Rev. Lett. 87, 270401 (2001).
[Crossref]

B. K. Teo and G. Raithel, “Loading mechanism for atomic guides,” Phys. Rev. A 63, 031402 (2001).
[Crossref]

W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hänsch, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86, 608–611 (2001).
[Crossref] [PubMed]

2000 (5)

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: atom chips,” Phys. Rev. Lett. 84, 4749–4752 (2000).
[Crossref] [PubMed]

D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam splitter for guided atoms,” Phys. Rev. Lett. 85, 5483–5487 (2000).
[Crossref]

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndic, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124–1127 (2000).
[Crossref] [PubMed]

M. Key, I. Hughes, W. Rooijakkers, B. Sauer, and E. Hinds, “Propagation of cold atoms along a miniature magnetic guide,” Phys. Rev. Lett. 84, 1371–1373 (2000).
[Crossref] [PubMed]

D. Müller, E. Cornell, M. Prevedelli, P. Schwindt, A. Zozulya, and D. Anderson, “Waveguide atom beam splitter for laser-cooled neutral atoms,” Opt. Lett. 25, 1382–1384 (2000).
[Crossref]

1999 (1)

D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, “Guiding neutral atoms around curves with lithographically patterned current-carrying wires,” Phys. Rev. Lett. 83, 5194–5197 (1999).
[Crossref]

1997 (1)

T. L. Gustavson, P. Bouyer, and M. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lett. 78, 2046–2049 (1997).
[Crossref]

Anderson, D.

Anderson, D. Z.

Y.-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[Crossref] [PubMed]

D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, “Guiding neutral atoms around curves with lithographically patterned current-carrying wires,” Phys. Rev. Lett. 83, 5194–5197 (1999).
[Crossref]

Barrett, M. D.

J. A. Sauer, M. D. Barrett, and M. S. Chapman, “Storage ring for neutral atoms,” Phys. Rev. Lett. 87, 270401 (2001).
[Crossref]

Bouyer, P.

T. L. Gustavson, P. Bouyer, and M. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lett. 78, 2046–2049 (1997).
[Crossref]

Bright, V. M.

Y.-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[Crossref] [PubMed]

Cassettari, D.

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: atom chips,” Phys. Rev. Lett. 84, 4749–4752 (2000).
[Crossref] [PubMed]

D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam splitter for guided atoms,” Phys. Rev. Lett. 85, 5483–5487 (2000).
[Crossref]

Chapman, M. S.

J. A. Sauer, M. D. Barrett, and M. S. Chapman, “Storage ring for neutral atoms,” Phys. Rev. Lett. 87, 270401 (2001).
[Crossref]

Cornell, E.

Cornell, E. A.

Y.-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[Crossref] [PubMed]

D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, “Guiding neutral atoms around curves with lithographically patterned current-carrying wires,” Phys. Rev. Lett. 83, 5194–5197 (1999).
[Crossref]

Dekker, N. H.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndic, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124–1127 (2000).
[Crossref] [PubMed]

Diot, Q.

Y.-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[Crossref] [PubMed]

Drndic, M.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndic, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124–1127 (2000).
[Crossref] [PubMed]

Folman, R.

D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam splitter for guided atoms,” Phys. Rev. Lett. 85, 5483–5487 (2000).
[Crossref]

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: atom chips,” Phys. Rev. Lett. 84, 4749–4752 (2000).
[Crossref] [PubMed]

Fortagh, J.

J. Fortagh, H. Ott, S. Kraft, A. Gunther, and C. Zimmermann, “Bose-Einstein condensates in magnetic waveguides,” Appl. Phys. B 76, 157–163 (2003).
[Crossref]

Grow, R. J.

D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, “Guiding neutral atoms around curves with lithographically patterned current-carrying wires,” Phys. Rev. Lett. 83, 5194–5197 (1999).
[Crossref]

Gunther, A.

J. Fortagh, H. Ott, S. Kraft, A. Gunther, and C. Zimmermann, “Bose-Einstein condensates in magnetic waveguides,” Appl. Phys. B 76, 157–163 (2003).
[Crossref]

Gupta, S.

S. Gupta, K. W. Murch, K. L. Moore, T. P. Purdy, and D. M. Stamper-Kurn, “Bose-Einstein condensation in a circular waveguide,” Phys. Rev. Lett. 95, 143201 (2005).
[Crossref] [PubMed]

Gustavson, T. L.

T. L. Gustavson, P. Bouyer, and M. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lett. 78, 2046–2049 (1997).
[Crossref]

Hänsch, T. W.

W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hänsch, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86, 608–611 (2001).
[Crossref] [PubMed]

Hänsel, W.

W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hänsch, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86, 608–611 (2001).
[Crossref] [PubMed]

Hessmo, B.

D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam splitter for guided atoms,” Phys. Rev. Lett. 85, 5483–5487 (2000).
[Crossref]

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: atom chips,” Phys. Rev. Lett. 84, 4749–4752 (2000).
[Crossref] [PubMed]

Hinds, E.

M. Key, I. Hughes, W. Rooijakkers, B. Sauer, and E. Hinds, “Propagation of cold atoms along a miniature magnetic guide,” Phys. Rev. Lett. 84, 1371–1373 (2000).
[Crossref] [PubMed]

Hommelhoff, P.

W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hänsch, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86, 608–611 (2001).
[Crossref] [PubMed]

Hughes, I.

M. Key, I. Hughes, W. Rooijakkers, B. Sauer, and E. Hinds, “Propagation of cold atoms along a miniature magnetic guide,” Phys. Rev. Lett. 84, 1371–1373 (2000).
[Crossref] [PubMed]

Kasevich, M.

T. L. Gustavson, P. Bouyer, and M. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lett. 78, 2046–2049 (1997).
[Crossref]

Key, M.

M. Key, I. Hughes, W. Rooijakkers, B. Sauer, and E. Hinds, “Propagation of cold atoms along a miniature magnetic guide,” Phys. Rev. Lett. 84, 1371–1373 (2000).
[Crossref] [PubMed]

Kishimoto, T.

Y.-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[Crossref] [PubMed]

Kraft, S.

J. Fortagh, H. Ott, S. Kraft, A. Gunther, and C. Zimmermann, “Bose-Einstein condensates in magnetic waveguides,” Appl. Phys. B 76, 157–163 (2003).
[Crossref]

Krüger, P.

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: atom chips,” Phys. Rev. Lett. 84, 4749–4752 (2000).
[Crossref] [PubMed]

Lee, C. S.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndic, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124–1127 (2000).
[Crossref] [PubMed]

Lorent, V.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndic, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124–1127 (2000).
[Crossref] [PubMed]

Maier, T.

D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam splitter for guided atoms,” Phys. Rev. Lett. 85, 5483–5487 (2000).
[Crossref]

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: atom chips,” Phys. Rev. Lett. 84, 4749–4752 (2000).
[Crossref] [PubMed]

Moore, K. L.

S. Gupta, K. W. Murch, K. L. Moore, T. P. Purdy, and D. M. Stamper-Kurn, “Bose-Einstein condensation in a circular waveguide,” Phys. Rev. Lett. 95, 143201 (2005).
[Crossref] [PubMed]

Müller, D.

D. Müller, E. Cornell, M. Prevedelli, P. Schwindt, A. Zozulya, and D. Anderson, “Waveguide atom beam splitter for laser-cooled neutral atoms,” Opt. Lett. 25, 1382–1384 (2000).
[Crossref]

D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, “Guiding neutral atoms around curves with lithographically patterned current-carrying wires,” Phys. Rev. Lett. 83, 5194–5197 (1999).
[Crossref]

Murch, K. W.

S. Gupta, K. W. Murch, K. L. Moore, T. P. Purdy, and D. M. Stamper-Kurn, “Bose-Einstein condensation in a circular waveguide,” Phys. Rev. Lett. 95, 143201 (2005).
[Crossref] [PubMed]

Ott, H.

J. Fortagh, H. Ott, S. Kraft, A. Gunther, and C. Zimmermann, “Bose-Einstein condensates in magnetic waveguides,” Appl. Phys. B 76, 157–163 (2003).
[Crossref]

Prentiss, M.

Y.-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[Crossref] [PubMed]

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndic, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124–1127 (2000).
[Crossref] [PubMed]

Prevedelli, M.

Purdy, T. P.

S. Gupta, K. W. Murch, K. L. Moore, T. P. Purdy, and D. M. Stamper-Kurn, “Bose-Einstein condensation in a circular waveguide,” Phys. Rev. Lett. 95, 143201 (2005).
[Crossref] [PubMed]

Raithel, G.

B. K. Teo and G. Raithel, “Loading mechanism for atomic guides,” Phys. Rev. A 63, 031402 (2001).
[Crossref]

Reichel, J.

W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hänsch, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86, 608–611 (2001).
[Crossref] [PubMed]

Rooijakkers, W.

M. Key, I. Hughes, W. Rooijakkers, B. Sauer, and E. Hinds, “Propagation of cold atoms along a miniature magnetic guide,” Phys. Rev. Lett. 84, 1371–1373 (2000).
[Crossref] [PubMed]

Saravanan, R. A.

Y.-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[Crossref] [PubMed]

Sauer, B.

M. Key, I. Hughes, W. Rooijakkers, B. Sauer, and E. Hinds, “Propagation of cold atoms along a miniature magnetic guide,” Phys. Rev. Lett. 84, 1371–1373 (2000).
[Crossref] [PubMed]

Sauer, J. A.

J. A. Sauer, M. D. Barrett, and M. S. Chapman, “Storage ring for neutral atoms,” Phys. Rev. Lett. 87, 270401 (2001).
[Crossref]

Schmiedmayer, J.

D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam splitter for guided atoms,” Phys. Rev. Lett. 85, 5483–5487 (2000).
[Crossref]

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: atom chips,” Phys. Rev. Lett. 84, 4749–4752 (2000).
[Crossref] [PubMed]

Schwindt, P.

Schwindt, P. D. D.

D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, “Guiding neutral atoms around curves with lithographically patterned current-carrying wires,” Phys. Rev. Lett. 83, 5194–5197 (1999).
[Crossref]

Segal, S. R.

Y.-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[Crossref] [PubMed]

Smith, S. P.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndic, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124–1127 (2000).
[Crossref] [PubMed]

Stamper-Kurn, D. M.

S. Gupta, K. W. Murch, K. L. Moore, T. P. Purdy, and D. M. Stamper-Kurn, “Bose-Einstein condensation in a circular waveguide,” Phys. Rev. Lett. 95, 143201 (2005).
[Crossref] [PubMed]

Teo, B. K.

B. K. Teo and G. Raithel, “Loading mechanism for atomic guides,” Phys. Rev. A 63, 031402 (2001).
[Crossref]

Thywissen, J. H.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndic, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124–1127 (2000).
[Crossref] [PubMed]

Wang, Y.-J.

Y.-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[Crossref] [PubMed]

Westervelt, R. M.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndic, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124–1127 (2000).
[Crossref] [PubMed]

Wu, S.

Y.-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[Crossref] [PubMed]

Zimmermann, C.

J. Fortagh, H. Ott, S. Kraft, A. Gunther, and C. Zimmermann, “Bose-Einstein condensates in magnetic waveguides,” Appl. Phys. B 76, 157–163 (2003).
[Crossref]

Zozulya, A.

Appl. Phys. B (1)

J. Fortagh, H. Ott, S. Kraft, A. Gunther, and C. Zimmermann, “Bose-Einstein condensates in magnetic waveguides,” Appl. Phys. B 76, 157–163 (2003).
[Crossref]

Opt. Lett. (1)

Phys. Rev. A (1)

B. K. Teo and G. Raithel, “Loading mechanism for atomic guides,” Phys. Rev. A 63, 031402 (2001).
[Crossref]

Phys. Rev. Lett. (10)

D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam splitter for guided atoms,” Phys. Rev. Lett. 85, 5483–5487 (2000).
[Crossref]

W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hänsch, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86, 608–611 (2001).
[Crossref] [PubMed]

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: atom chips,” Phys. Rev. Lett. 84, 4749–4752 (2000).
[Crossref] [PubMed]

J. A. Sauer, M. D. Barrett, and M. S. Chapman, “Storage ring for neutral atoms,” Phys. Rev. Lett. 87, 270401 (2001).
[Crossref]

S. Gupta, K. W. Murch, K. L. Moore, T. P. Purdy, and D. M. Stamper-Kurn, “Bose-Einstein condensation in a circular waveguide,” Phys. Rev. Lett. 95, 143201 (2005).
[Crossref] [PubMed]

D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, “Guiding neutral atoms around curves with lithographically patterned current-carrying wires,” Phys. Rev. Lett. 83, 5194–5197 (1999).
[Crossref]

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndic, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124–1127 (2000).
[Crossref] [PubMed]

M. Key, I. Hughes, W. Rooijakkers, B. Sauer, and E. Hinds, “Propagation of cold atoms along a miniature magnetic guide,” Phys. Rev. Lett. 84, 1371–1373 (2000).
[Crossref] [PubMed]

Y.-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[Crossref] [PubMed]

T. L. Gustavson, P. Bouyer, and M. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lett. 78, 2046–2049 (1997).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Plot of measured magnetic B field and Gradient

Fig. 2.
Fig. 2.

Experimental set up.

Fig. 3.
Fig. 3.

Rotating MOT. An over exposed image as the MOT is rotated 60Hz.

Fig. 4.
Fig. 4.

A trap potential rotates around the origin O=(0,0) with an angular frequency Ω in the x-y plane. The distance from the trap center to the original point O is b.

Fig. 5.
Fig. 5.

Time-averaged effective potential of a rotating Gaussian-shape trap along x axis with different rotating radius: (1) b/σ=0.5, (2) b/σ=1, (3) b/σ=2, and (4) b/σ=4.

Fig. 6.
Fig. 6.

The motion orbit of an atom in a rotating Gaussian-shape trap starting from the initial position (b, 0) with the following parameters: Γ/ω=4, σ/b=1/2, and total time of Δt=6,000/ω. (a) Ω/ω=0.5, (b) Ω/ω=1, (c) Ω/ω=4.

Fig. 7.
Fig. 7.

The drag angular velocity vs. rotation frequency of an atom in a rotating Gaussianshape trap starting from the initial position (b, 0) with the following parameters: Γ/ω=4, σ/b=1/2.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

B ( r ) = [ 1 4 π ρ m ( r ' ) ( r r ' ) r r ' 3 d 3 r ' ] B ext
U ( r , t ) = U ( x b cos Ω t , y b sin Ω t ) ,
m d 2 d t 2 r = β d d t r U ( r , t )
U ( x , y ; t ) = 1 2 m ω 2 σ 2 Exp [ 1 σ 2 ( ( x b cos Ω t ) 2 + ( y b sin Ω t ) 2 ) ]

Metrics