Abstract

The deterioration and deformation of a free-space optical beam wave-front as it propagates through the atmosphere can reduce the link availability and may introduce burst errors thus degrading the performance of the system. We investigate the suitability of utilizing soft-computing (SC) based tools for improving performance of free-space optical (FSO) communications systems. The SC based tools are used for the prediction of key parameters of a FSO communications system. Measured data collected from an experimental FSO communication system is used as training and testing data for a proposed multi-layer neural network predictor (MNNP) used to predict future parameter values. The predicted parameters are essential for reducing transmission errors by improving the antenna’s accuracy of tracking data beams. This is particularly essential for periods considered to be of strong atmospheric turbulence. The parameter values predicted using the proposed tool show acceptable conformity with original measurements.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Willebrand and B. S. Ghuman, Free-Space Optics: Enabling Optical Connectivity in Today's Networks, (Sams Publishing, Indianapolis, In., 2002)
  2. T. H. Carbonneau and D. R. Wisely, "Opportunities and challenges for optical wireless: the competitive advantage of free space telecommunications links in today’s crowded marketplace," in Wireless Technologiesand Systems: Millimeter-Wave and Optical, P. Christopher, L. Langston and G. S. Mecherle, eds, Proc. SPIE 3232, 119-128, (1998).
    [CrossRef]
  3. G. Nykolak, G. Raybon, B. Mikkelsen, B. B. Brown, P. F. Szajowski, J. J. Auborn, and H. M. Presby, "160-Gb/s free-space transmission link," in Optical Wireless Communications III, E. J. Korevaar, eds, Proc. SPIE 4214, 11-13 (2001)
    [CrossRef]
  4. D. Kedar and S. Arnon, "Urban optical wireless communication networks: the main challenges and possible solutions," IEEE Commun. Mag. 42, S2-S7 (2004).
    [CrossRef]
  5. S. Bloom, E. Korevaar, J. Schuster, and H. Willebrand, "Understanding the performance of free-space optics," J. Opt. Netw. 2, 178-200 (2003).
  6. K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, "FSO Antenna with high speed tracking for improved atmospheric turbulence effects mitigation," J. Jpn. Soc. Infrared Science and Technology (2005).
  7. D. A. Montera, B. M. Welsh, M. C. Roggemann, and D. W. Ruck, "Prediction of wave-front sensor slope measurements with artificial neural networks," Appl. Opt. 36, 675-681 (1997).
    [CrossRef] [PubMed]
  8. K. Takahashi and Y. Arimoto, "Development of optical antennas utilizing free form surface optics for the high speed laser communication systems," in Free-Space Laser Communication Technologies XVIII, G. S. Mecherle, eds, Proc. SPIE 6105, (2006)
    [CrossRef]
  9. K. Gurney, An Introduction to Neural Networks, (UCL Press, London, 1997).
    [CrossRef]
  10. The Mathworks Inc., "Neural Networks Toolbox User Guide," (Mathworks, Massachusets, 2005).
  11. S. J. Ovaska, Computationally Intelligent Hybrid Systems: The Fusion of Soft Computing and Hard Computing (Wiley-IEEE Press, 2005) Chap. 1.
  12. K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, T. Sato, K. Asatani, M. Hatori, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, "Mitigation of atmospheric effects on terrestrial FSO communication systems by using high-speed beam tracking antenna," in Free-Space Laser Communication Technologies XVIII, G. S. Mecherle, eds, Proc. SPIE 6105, (2006)
    [CrossRef]

2004 (1)

D. Kedar and S. Arnon, "Urban optical wireless communication networks: the main challenges and possible solutions," IEEE Commun. Mag. 42, S2-S7 (2004).
[CrossRef]

2003 (1)

1997 (1)

Arnon, S.

D. Kedar and S. Arnon, "Urban optical wireless communication networks: the main challenges and possible solutions," IEEE Commun. Mag. 42, S2-S7 (2004).
[CrossRef]

Bloom, S.

Kedar, D.

D. Kedar and S. Arnon, "Urban optical wireless communication networks: the main challenges and possible solutions," IEEE Commun. Mag. 42, S2-S7 (2004).
[CrossRef]

Korevaar, E.

Montera, D. A.

Roggemann, M. C.

Ruck, D. W.

Schuster, J.

Welsh, B. M.

Willebrand, H.

Appl. Opt. (1)

IEEE Commun. Mag. (1)

D. Kedar and S. Arnon, "Urban optical wireless communication networks: the main challenges and possible solutions," IEEE Commun. Mag. 42, S2-S7 (2004).
[CrossRef]

J. Opt. Netw. (1)

Other (9)

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, "FSO Antenna with high speed tracking for improved atmospheric turbulence effects mitigation," J. Jpn. Soc. Infrared Science and Technology (2005).

H. Willebrand and B. S. Ghuman, Free-Space Optics: Enabling Optical Connectivity in Today's Networks, (Sams Publishing, Indianapolis, In., 2002)

T. H. Carbonneau and D. R. Wisely, "Opportunities and challenges for optical wireless: the competitive advantage of free space telecommunications links in today’s crowded marketplace," in Wireless Technologiesand Systems: Millimeter-Wave and Optical, P. Christopher, L. Langston and G. S. Mecherle, eds, Proc. SPIE 3232, 119-128, (1998).
[CrossRef]

G. Nykolak, G. Raybon, B. Mikkelsen, B. B. Brown, P. F. Szajowski, J. J. Auborn, and H. M. Presby, "160-Gb/s free-space transmission link," in Optical Wireless Communications III, E. J. Korevaar, eds, Proc. SPIE 4214, 11-13 (2001)
[CrossRef]

K. Takahashi and Y. Arimoto, "Development of optical antennas utilizing free form surface optics for the high speed laser communication systems," in Free-Space Laser Communication Technologies XVIII, G. S. Mecherle, eds, Proc. SPIE 6105, (2006)
[CrossRef]

K. Gurney, An Introduction to Neural Networks, (UCL Press, London, 1997).
[CrossRef]

The Mathworks Inc., "Neural Networks Toolbox User Guide," (Mathworks, Massachusets, 2005).

S. J. Ovaska, Computationally Intelligent Hybrid Systems: The Fusion of Soft Computing and Hard Computing (Wiley-IEEE Press, 2005) Chap. 1.

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, T. Sato, K. Asatani, M. Hatori, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, "Mitigation of atmospheric effects on terrestrial FSO communication systems by using high-speed beam tracking antenna," in Free-Space Laser Communication Technologies XVIII, G. S. Mecherle, eds, Proc. SPIE 6105, (2006)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Beam wander and scintillation attributed to atmospheric turbulence.

Fig. 2.
Fig. 2.

Experimental antenna and scintillation and optical power attenuation measurement antenna on the rooftop of Bldg. 14 Nishi Waseda Campus

Fig. 3.
Fig. 3.

Photograph of experimental hardware setup.

Fig. 4.
Fig. 4.

Relationship between scintillation and rate of AOA fluctuation.

Fig. 5.
Fig. 5.

The structure of test antenna (a) the cross-section view (b) configuration of internal antenna optical devices.

Fig. 6.
Fig. 6.

The structure of the multilayer neural network predictor.

Fig. 7.
Fig. 7.

Bit error rate and fiber received power characteristics

Fig. 8.
Fig. 8.

Measured beam intensity fluctuation (a) time series data (b) probability density function of times series data.

Fig. 9.
Fig. 9.

Predictor training data (a) AOA fluctuations training data and (b) FPM actuator drive voltages training data.

Fig. 10.
Fig. 10.

Errors in the test prediction (a) of detected voltage variations due to AOA fluctuations and (b) of FPM actuator drive voltages.

Tables (2)

Tables Icon

Table 1. Selected specifications of equipment used in the experiment.

Tables Icon

Table 2. Regression analysis results for different predictions.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

V x = ( P 2 + P 4 ) ( P 1 + P 3 ) i = 1 4 P i
V y = ( P 1 + P 2 ) ( P 3 + P 4 ) i = 1 4 P i
MSE = 1 M n = 1 M ( x ( n ) x p ( n ) ) 2 ,
h j ( n ) = f h ( i = 1 N w ji x ( n 1 i ) ) + b j ,
f h ( x ) = 2 1 + e x 1 .
y ( n ) = j = 1 R w j h j ( n ) + b 0 ,

Metrics