Abstract

The colors of butterfly wings are determined by the structural as well as pigmentary properties of the wing scales. Reflectance spectra of the wings of a number of pierid butterfly species, specifically the small white, Pieris rapae, show that the long-wavelength reflectance of the scales in situ, on the wing, is distinctly higher than that of single, isolated scales. An optical model explains that this is due to multiple scattering on overlapping scales by treating the layers of scales on both sides of the wing as a stack of incoherently scattering plates. The model sheds new light on the adaptive significance and evolution of butterfly wing patterns.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. F. Nijhout, The Development and Evolution of Butterfly Wing Patterns (Washington, Smithsonian Institution Press, 1991).
  2. J. L. Brink and M. E. Lee, "Confined blue iridescence by a diffracting microstructure: an optical investigation of the Cynandra opis butterfly," Appl. Opt. 38, 5282-5289 (1999).
    [CrossRef]
  3. P. Vukusic and J. R. Sambles, "Photonic structures in biology," Nature 424, 852-855 (2003).
    [CrossRef] [PubMed]
  4. S. Kinoshita and S. Yoshioka, "Structural colors in nature: the role of regularity and irregularity in the structure," Chem. Phys. 6, 1-19 (2005).
  5. H. Ghiradella, D. Aneshansley, T. Eisner, R. Silberglied and H. E. Hinton, "Ultraviolet reflection of a male butterfly: Interference color caused by thin-layer elaboration of wing scales," Science 178, 1214-1217 (1972).
    [CrossRef] [PubMed]
  6. R. Silberglied and O. R. Taylor, "Ultraviolet differences between the sulphur butterflies, Colias eurytheme and C. philodice, and a possible isolating mechanism," Nature 241, 406-408 (1973).
    [CrossRef]
  7. R. L. Rutowski, "The use of visual cues in sexual discrimination by males of the small sulphur butterfly Eurema lisa (Lepidoptera, Pieridae)," J. Comp. Physiol. A 115, 61-74(1977).
    [CrossRef]
  8. L. P. Biro, Z. Balint, K. Kertesz, Z. Vertesy, G. I. Mark, Z. E. Horvath, J. Balazs, D. Mehn, I. Kiricsi, V. Lousse and J. P. Vigneron, "Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair," Phys. Rev. E 67, 021907 (2003).
    [CrossRef]
  9. N. Yagi, "Note of electron microscope research on pterin pigment in the scales of pierid butterflies," Annot. Zool. Jap. 27, 113-114 (1954).
  10. H. Ghiradella, "Hairs, bristles, and scales," in: Microscopic Anatomy of Invertebrates, Vol. 11 A: Insecta. M. Locke, ed., (New York, Wiley-Liss, 1998), pp. 257-287.
  11. D. G. Stavenga, S. Stowe, K. Siebke, J. Zeil and K. Arikawa, "Butterfly wing colours: scale beads make white pierid wings brighter," Proc. R. Soc. Lond. B 271, 1577-1584 (2004).
    [CrossRef]
  12. R. L. Rutowski, J. M. Macedonia, N. Morehouse and L. Taylor-Taft, "Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme," Proc. R. Soc. Lond. B 272, 2329-2335 (2005).
    [CrossRef]
  13. Y. Obara, "Studies on the mating behavior of the white cabbage butterfly, Pieris rapae crucivora Boisduval. III. Near-ultraviolet reflection as the signal of intraspecific communication," Zeitschrift fur Vergleichende Physiologie. 69, 99-116 (1970).
    [CrossRef]
  14. Y. Obara and M. E. N. Majerus, "Initial mate recognition in the British cabbage butterfly, Pieris rapae rapae," Zoolog. Sci. 17, 725-730 (2000).
    [CrossRef]
  15. G. G. Stokes, "On the intensity of the light reflected from and transmitted through a pile of plates," Proc. Roy. Soc. 11, 545-556 (1862).
  16. T. Smith, "On the light transmitted and reflected by a pile of plates," Trans. Opt. Soc. 27, 317-323 (1926).
    [CrossRef]
  17. P. Baumeister, R. Hahn and D. Harrison, "The radiant transmittance of tandem arrays of filters," Optica Acta 19, 853-864 (1972).
    [CrossRef]
  18. S. Yoshioka and S. Kinoshita, "Single-scale spectroscopy of structurally colored butterflies: measurements of quantified reflectance and transmittance," J. Opt. Soc. Am. A 23, 134-141 (2006).
    [CrossRef]
  19. S. Yoshioka and S. Kinoshita, "Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly," Proc. R. Soc. Lond. B 273, 129-134 (2006).
    [CrossRef]

2006 (2)

S. Yoshioka and S. Kinoshita, "Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly," Proc. R. Soc. Lond. B 273, 129-134 (2006).
[CrossRef]

S. Yoshioka and S. Kinoshita, "Single-scale spectroscopy of structurally colored butterflies: measurements of quantified reflectance and transmittance," J. Opt. Soc. Am. A 23, 134-141 (2006).
[CrossRef]

2005 (2)

R. L. Rutowski, J. M. Macedonia, N. Morehouse and L. Taylor-Taft, "Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme," Proc. R. Soc. Lond. B 272, 2329-2335 (2005).
[CrossRef]

S. Kinoshita and S. Yoshioka, "Structural colors in nature: the role of regularity and irregularity in the structure," Chem. Phys. 6, 1-19 (2005).

2004 (1)

D. G. Stavenga, S. Stowe, K. Siebke, J. Zeil and K. Arikawa, "Butterfly wing colours: scale beads make white pierid wings brighter," Proc. R. Soc. Lond. B 271, 1577-1584 (2004).
[CrossRef]

2003 (2)

L. P. Biro, Z. Balint, K. Kertesz, Z. Vertesy, G. I. Mark, Z. E. Horvath, J. Balazs, D. Mehn, I. Kiricsi, V. Lousse and J. P. Vigneron, "Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair," Phys. Rev. E 67, 021907 (2003).
[CrossRef]

P. Vukusic and J. R. Sambles, "Photonic structures in biology," Nature 424, 852-855 (2003).
[CrossRef] [PubMed]

2000 (1)

Y. Obara and M. E. N. Majerus, "Initial mate recognition in the British cabbage butterfly, Pieris rapae rapae," Zoolog. Sci. 17, 725-730 (2000).
[CrossRef]

1999 (1)

1977 (1)

R. L. Rutowski, "The use of visual cues in sexual discrimination by males of the small sulphur butterfly Eurema lisa (Lepidoptera, Pieridae)," J. Comp. Physiol. A 115, 61-74(1977).
[CrossRef]

1973 (1)

R. Silberglied and O. R. Taylor, "Ultraviolet differences between the sulphur butterflies, Colias eurytheme and C. philodice, and a possible isolating mechanism," Nature 241, 406-408 (1973).
[CrossRef]

1972 (2)

H. Ghiradella, D. Aneshansley, T. Eisner, R. Silberglied and H. E. Hinton, "Ultraviolet reflection of a male butterfly: Interference color caused by thin-layer elaboration of wing scales," Science 178, 1214-1217 (1972).
[CrossRef] [PubMed]

P. Baumeister, R. Hahn and D. Harrison, "The radiant transmittance of tandem arrays of filters," Optica Acta 19, 853-864 (1972).
[CrossRef]

1970 (1)

Y. Obara, "Studies on the mating behavior of the white cabbage butterfly, Pieris rapae crucivora Boisduval. III. Near-ultraviolet reflection as the signal of intraspecific communication," Zeitschrift fur Vergleichende Physiologie. 69, 99-116 (1970).
[CrossRef]

1954 (1)

N. Yagi, "Note of electron microscope research on pterin pigment in the scales of pierid butterflies," Annot. Zool. Jap. 27, 113-114 (1954).

1926 (1)

T. Smith, "On the light transmitted and reflected by a pile of plates," Trans. Opt. Soc. 27, 317-323 (1926).
[CrossRef]

1862 (1)

G. G. Stokes, "On the intensity of the light reflected from and transmitted through a pile of plates," Proc. Roy. Soc. 11, 545-556 (1862).

Aneshansley, D.

H. Ghiradella, D. Aneshansley, T. Eisner, R. Silberglied and H. E. Hinton, "Ultraviolet reflection of a male butterfly: Interference color caused by thin-layer elaboration of wing scales," Science 178, 1214-1217 (1972).
[CrossRef] [PubMed]

Arikawa, K.

D. G. Stavenga, S. Stowe, K. Siebke, J. Zeil and K. Arikawa, "Butterfly wing colours: scale beads make white pierid wings brighter," Proc. R. Soc. Lond. B 271, 1577-1584 (2004).
[CrossRef]

Balazs, J.

L. P. Biro, Z. Balint, K. Kertesz, Z. Vertesy, G. I. Mark, Z. E. Horvath, J. Balazs, D. Mehn, I. Kiricsi, V. Lousse and J. P. Vigneron, "Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair," Phys. Rev. E 67, 021907 (2003).
[CrossRef]

Balint, Z.

L. P. Biro, Z. Balint, K. Kertesz, Z. Vertesy, G. I. Mark, Z. E. Horvath, J. Balazs, D. Mehn, I. Kiricsi, V. Lousse and J. P. Vigneron, "Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair," Phys. Rev. E 67, 021907 (2003).
[CrossRef]

Baumeister, P.

P. Baumeister, R. Hahn and D. Harrison, "The radiant transmittance of tandem arrays of filters," Optica Acta 19, 853-864 (1972).
[CrossRef]

Biro, L. P.

L. P. Biro, Z. Balint, K. Kertesz, Z. Vertesy, G. I. Mark, Z. E. Horvath, J. Balazs, D. Mehn, I. Kiricsi, V. Lousse and J. P. Vigneron, "Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair," Phys. Rev. E 67, 021907 (2003).
[CrossRef]

Brink, J. L.

Eisner, T.

H. Ghiradella, D. Aneshansley, T. Eisner, R. Silberglied and H. E. Hinton, "Ultraviolet reflection of a male butterfly: Interference color caused by thin-layer elaboration of wing scales," Science 178, 1214-1217 (1972).
[CrossRef] [PubMed]

Ghiradella, H.

H. Ghiradella, D. Aneshansley, T. Eisner, R. Silberglied and H. E. Hinton, "Ultraviolet reflection of a male butterfly: Interference color caused by thin-layer elaboration of wing scales," Science 178, 1214-1217 (1972).
[CrossRef] [PubMed]

Hahn, R.

P. Baumeister, R. Hahn and D. Harrison, "The radiant transmittance of tandem arrays of filters," Optica Acta 19, 853-864 (1972).
[CrossRef]

Harrison, D.

P. Baumeister, R. Hahn and D. Harrison, "The radiant transmittance of tandem arrays of filters," Optica Acta 19, 853-864 (1972).
[CrossRef]

Hinton, H. E.

H. Ghiradella, D. Aneshansley, T. Eisner, R. Silberglied and H. E. Hinton, "Ultraviolet reflection of a male butterfly: Interference color caused by thin-layer elaboration of wing scales," Science 178, 1214-1217 (1972).
[CrossRef] [PubMed]

Horvath, Z. E.

L. P. Biro, Z. Balint, K. Kertesz, Z. Vertesy, G. I. Mark, Z. E. Horvath, J. Balazs, D. Mehn, I. Kiricsi, V. Lousse and J. P. Vigneron, "Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair," Phys. Rev. E 67, 021907 (2003).
[CrossRef]

Kertesz, K.

L. P. Biro, Z. Balint, K. Kertesz, Z. Vertesy, G. I. Mark, Z. E. Horvath, J. Balazs, D. Mehn, I. Kiricsi, V. Lousse and J. P. Vigneron, "Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair," Phys. Rev. E 67, 021907 (2003).
[CrossRef]

Kinoshita, S.

S. Yoshioka and S. Kinoshita, "Single-scale spectroscopy of structurally colored butterflies: measurements of quantified reflectance and transmittance," J. Opt. Soc. Am. A 23, 134-141 (2006).
[CrossRef]

S. Yoshioka and S. Kinoshita, "Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly," Proc. R. Soc. Lond. B 273, 129-134 (2006).
[CrossRef]

S. Kinoshita and S. Yoshioka, "Structural colors in nature: the role of regularity and irregularity in the structure," Chem. Phys. 6, 1-19 (2005).

Kiricsi, I.

L. P. Biro, Z. Balint, K. Kertesz, Z. Vertesy, G. I. Mark, Z. E. Horvath, J. Balazs, D. Mehn, I. Kiricsi, V. Lousse and J. P. Vigneron, "Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair," Phys. Rev. E 67, 021907 (2003).
[CrossRef]

Lee, M. E.

Lousse, V.

L. P. Biro, Z. Balint, K. Kertesz, Z. Vertesy, G. I. Mark, Z. E. Horvath, J. Balazs, D. Mehn, I. Kiricsi, V. Lousse and J. P. Vigneron, "Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair," Phys. Rev. E 67, 021907 (2003).
[CrossRef]

Macedonia, J. M.

R. L. Rutowski, J. M. Macedonia, N. Morehouse and L. Taylor-Taft, "Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme," Proc. R. Soc. Lond. B 272, 2329-2335 (2005).
[CrossRef]

Majerus, M. E. N.

Y. Obara and M. E. N. Majerus, "Initial mate recognition in the British cabbage butterfly, Pieris rapae rapae," Zoolog. Sci. 17, 725-730 (2000).
[CrossRef]

Mark, G. I.

L. P. Biro, Z. Balint, K. Kertesz, Z. Vertesy, G. I. Mark, Z. E. Horvath, J. Balazs, D. Mehn, I. Kiricsi, V. Lousse and J. P. Vigneron, "Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair," Phys. Rev. E 67, 021907 (2003).
[CrossRef]

Mehn, D.

L. P. Biro, Z. Balint, K. Kertesz, Z. Vertesy, G. I. Mark, Z. E. Horvath, J. Balazs, D. Mehn, I. Kiricsi, V. Lousse and J. P. Vigneron, "Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair," Phys. Rev. E 67, 021907 (2003).
[CrossRef]

Morehouse, N.

R. L. Rutowski, J. M. Macedonia, N. Morehouse and L. Taylor-Taft, "Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme," Proc. R. Soc. Lond. B 272, 2329-2335 (2005).
[CrossRef]

Obara, Y.

Y. Obara and M. E. N. Majerus, "Initial mate recognition in the British cabbage butterfly, Pieris rapae rapae," Zoolog. Sci. 17, 725-730 (2000).
[CrossRef]

Y. Obara, "Studies on the mating behavior of the white cabbage butterfly, Pieris rapae crucivora Boisduval. III. Near-ultraviolet reflection as the signal of intraspecific communication," Zeitschrift fur Vergleichende Physiologie. 69, 99-116 (1970).
[CrossRef]

Rutowski, R. L.

R. L. Rutowski, J. M. Macedonia, N. Morehouse and L. Taylor-Taft, "Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme," Proc. R. Soc. Lond. B 272, 2329-2335 (2005).
[CrossRef]

R. L. Rutowski, "The use of visual cues in sexual discrimination by males of the small sulphur butterfly Eurema lisa (Lepidoptera, Pieridae)," J. Comp. Physiol. A 115, 61-74(1977).
[CrossRef]

Sambles, J. R.

P. Vukusic and J. R. Sambles, "Photonic structures in biology," Nature 424, 852-855 (2003).
[CrossRef] [PubMed]

Siebke, K.

D. G. Stavenga, S. Stowe, K. Siebke, J. Zeil and K. Arikawa, "Butterfly wing colours: scale beads make white pierid wings brighter," Proc. R. Soc. Lond. B 271, 1577-1584 (2004).
[CrossRef]

Silberglied, R.

R. Silberglied and O. R. Taylor, "Ultraviolet differences between the sulphur butterflies, Colias eurytheme and C. philodice, and a possible isolating mechanism," Nature 241, 406-408 (1973).
[CrossRef]

H. Ghiradella, D. Aneshansley, T. Eisner, R. Silberglied and H. E. Hinton, "Ultraviolet reflection of a male butterfly: Interference color caused by thin-layer elaboration of wing scales," Science 178, 1214-1217 (1972).
[CrossRef] [PubMed]

Smith, T.

T. Smith, "On the light transmitted and reflected by a pile of plates," Trans. Opt. Soc. 27, 317-323 (1926).
[CrossRef]

Stavenga, D. G.

D. G. Stavenga, S. Stowe, K. Siebke, J. Zeil and K. Arikawa, "Butterfly wing colours: scale beads make white pierid wings brighter," Proc. R. Soc. Lond. B 271, 1577-1584 (2004).
[CrossRef]

Stokes, G. G.

G. G. Stokes, "On the intensity of the light reflected from and transmitted through a pile of plates," Proc. Roy. Soc. 11, 545-556 (1862).

Stowe, S.

D. G. Stavenga, S. Stowe, K. Siebke, J. Zeil and K. Arikawa, "Butterfly wing colours: scale beads make white pierid wings brighter," Proc. R. Soc. Lond. B 271, 1577-1584 (2004).
[CrossRef]

Taylor, O. R.

R. Silberglied and O. R. Taylor, "Ultraviolet differences between the sulphur butterflies, Colias eurytheme and C. philodice, and a possible isolating mechanism," Nature 241, 406-408 (1973).
[CrossRef]

Taylor-Taft, L.

R. L. Rutowski, J. M. Macedonia, N. Morehouse and L. Taylor-Taft, "Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme," Proc. R. Soc. Lond. B 272, 2329-2335 (2005).
[CrossRef]

Vertesy, Z.

L. P. Biro, Z. Balint, K. Kertesz, Z. Vertesy, G. I. Mark, Z. E. Horvath, J. Balazs, D. Mehn, I. Kiricsi, V. Lousse and J. P. Vigneron, "Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair," Phys. Rev. E 67, 021907 (2003).
[CrossRef]

Vigneron, J. P.

L. P. Biro, Z. Balint, K. Kertesz, Z. Vertesy, G. I. Mark, Z. E. Horvath, J. Balazs, D. Mehn, I. Kiricsi, V. Lousse and J. P. Vigneron, "Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair," Phys. Rev. E 67, 021907 (2003).
[CrossRef]

Vukusic, P.

P. Vukusic and J. R. Sambles, "Photonic structures in biology," Nature 424, 852-855 (2003).
[CrossRef] [PubMed]

Yagi, N.

N. Yagi, "Note of electron microscope research on pterin pigment in the scales of pierid butterflies," Annot. Zool. Jap. 27, 113-114 (1954).

Yoshioka, S.

S. Yoshioka and S. Kinoshita, "Single-scale spectroscopy of structurally colored butterflies: measurements of quantified reflectance and transmittance," J. Opt. Soc. Am. A 23, 134-141 (2006).
[CrossRef]

S. Yoshioka and S. Kinoshita, "Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly," Proc. R. Soc. Lond. B 273, 129-134 (2006).
[CrossRef]

S. Kinoshita and S. Yoshioka, "Structural colors in nature: the role of regularity and irregularity in the structure," Chem. Phys. 6, 1-19 (2005).

Zeil, J.

D. G. Stavenga, S. Stowe, K. Siebke, J. Zeil and K. Arikawa, "Butterfly wing colours: scale beads make white pierid wings brighter," Proc. R. Soc. Lond. B 271, 1577-1584 (2004).
[CrossRef]

Annot. Zool. Jap. (1)

N. Yagi, "Note of electron microscope research on pterin pigment in the scales of pierid butterflies," Annot. Zool. Jap. 27, 113-114 (1954).

Appl. Opt. (1)

Chem. Phys. (1)

S. Kinoshita and S. Yoshioka, "Structural colors in nature: the role of regularity and irregularity in the structure," Chem. Phys. 6, 1-19 (2005).

J. Comp. Physiol. A (1)

R. L. Rutowski, "The use of visual cues in sexual discrimination by males of the small sulphur butterfly Eurema lisa (Lepidoptera, Pieridae)," J. Comp. Physiol. A 115, 61-74(1977).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nature (2)

P. Vukusic and J. R. Sambles, "Photonic structures in biology," Nature 424, 852-855 (2003).
[CrossRef] [PubMed]

R. Silberglied and O. R. Taylor, "Ultraviolet differences between the sulphur butterflies, Colias eurytheme and C. philodice, and a possible isolating mechanism," Nature 241, 406-408 (1973).
[CrossRef]

Optica Acta (1)

P. Baumeister, R. Hahn and D. Harrison, "The radiant transmittance of tandem arrays of filters," Optica Acta 19, 853-864 (1972).
[CrossRef]

Phys. Rev. E (1)

L. P. Biro, Z. Balint, K. Kertesz, Z. Vertesy, G. I. Mark, Z. E. Horvath, J. Balazs, D. Mehn, I. Kiricsi, V. Lousse and J. P. Vigneron, "Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair," Phys. Rev. E 67, 021907 (2003).
[CrossRef]

Proc. R. Soc. Lond. B (3)

D. G. Stavenga, S. Stowe, K. Siebke, J. Zeil and K. Arikawa, "Butterfly wing colours: scale beads make white pierid wings brighter," Proc. R. Soc. Lond. B 271, 1577-1584 (2004).
[CrossRef]

R. L. Rutowski, J. M. Macedonia, N. Morehouse and L. Taylor-Taft, "Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme," Proc. R. Soc. Lond. B 272, 2329-2335 (2005).
[CrossRef]

S. Yoshioka and S. Kinoshita, "Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly," Proc. R. Soc. Lond. B 273, 129-134 (2006).
[CrossRef]

Proc. Roy. Soc. (1)

G. G. Stokes, "On the intensity of the light reflected from and transmitted through a pile of plates," Proc. Roy. Soc. 11, 545-556 (1862).

Science (1)

H. Ghiradella, D. Aneshansley, T. Eisner, R. Silberglied and H. E. Hinton, "Ultraviolet reflection of a male butterfly: Interference color caused by thin-layer elaboration of wing scales," Science 178, 1214-1217 (1972).
[CrossRef] [PubMed]

Trans. Opt. Soc. (1)

T. Smith, "On the light transmitted and reflected by a pile of plates," Trans. Opt. Soc. 27, 317-323 (1926).
[CrossRef]

Zeitschrift fur Vergleichende Physiologie. (1)

Y. Obara, "Studies on the mating behavior of the white cabbage butterfly, Pieris rapae crucivora Boisduval. III. Near-ultraviolet reflection as the signal of intraspecific communication," Zeitschrift fur Vergleichende Physiologie. 69, 99-116 (1970).
[CrossRef]

Zoolog. Sci. (1)

Y. Obara and M. E. N. Majerus, "Initial mate recognition in the British cabbage butterfly, Pieris rapae rapae," Zoolog. Sci. 17, 725-730 (2000).
[CrossRef]

Other (2)

H. F. Nijhout, The Development and Evolution of Butterfly Wing Patterns (Washington, Smithsonian Institution Press, 1991).

H. Ghiradella, "Hairs, bristles, and scales," in: Microscopic Anatomy of Invertebrates, Vol. 11 A: Insecta. M. Locke, ed., (New York, Wiley-Liss, 1998), pp. 257-287.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Diagrams of the light flux in a pile of plates. a Two rough layers, 1 and 2, each with reflectances r and s and transmittances t and u, separate three media, 1–3. b Layer i of a stack of n layers separates media i and i+1.

Fig. 2.
Fig. 2.

Reflectance spectra of the dorsal forewing of the male autumn leaf vagrant, Eronia leda (inset: upper - UV, lower - RGB), measured with a fiber optic spectrometer. Spectrum 1 is from the orange tip, which exhibits a pronounced UV band, due to interference reflectors in the scale ridges. The orange color results from scattered light, filtered by a pigment absorbing in the UV, blue and green wavelength range. Spectrum 2 is from the dorsal forewing area outside the orange tip. The yellow color results from scattered light filtered by a pigment absorbing in the UV and blue wavelength range.

Fig. 3.
Fig. 3.

Reflectance spectra of various parts of the wings of the male common jezabel, Delias nigrina (inset: upper - dorsal, and lower - ventral), measured with a fiber optic spectrometer. Spectra 1–3 were measured from the dorsal side, and spectra 4–6 were measured from the ventral side. The reflectance of the dorsal hind wing is high and at most places virtually constant in the visible wavelength region, which is reflected in the white color (spectrum and location 2). The low reflectance at wavelengths below 400 nm demonstrates that the white scales contain a UV absorbing pigment. The dorsal hind wing has bands with a very slight red sheen (locations 1 and 3), which is reflected in the increased reflectance of spectra 1 and 3 at wavelengths above 560 nm. The red sheen is due to bands of red scales at the ventral hindwing (5), which contain pterin pigments absorbing throughout the visible wavelength region, except the red. The yellow bands in the ventral forewing (4) contain UV and blue absorbing pterins. Spectrum 4 has a small foot between 400 and 470 nm due to the contribution of white scales that occur in white spots at the dorsal side. The ventral wings are mainly covered by brown-black scales, due to strongly absorbing melanin pigment (6).

Fig. 4.
Fig. 4.

Scanning electron microcopy of wings of the small white Pieris rapae. a Rows of cover (c) and ground (g) scales are stacked on the wing substrate. b Side view of a cut wing, showing cover and ground scales on both dorsal and ventral sides of the wing. Bar: 50 µm.

Fig. 5.
Fig. 5.

Reflectance (a, b) and transmittance (c, d) spectra measured from wings of the small white butterfly, Pieris rapae, in various conditions, together with the resulting absorptance spectra (e, f). The measurements were performed with an integrating sphere. The wing was intact for the conditions DWV and VWD, where D indicates the dorsal side of the wing, W is the wing substrate, and V is the ventral side. The order of the letters indicates the direction of the incident light. For DW and WD, the wing scales were removed at the ventral side, and for VW and WV, the wing scales were removed at the dorsal side. For Wv and Wd, both dorsal and ventral scales were removed, and the incident light came from the ventral (v) and dorsal side (d), respectively. The scales contain a strongly UV absorbing pigment, resulting in a very low transmittance, or, a very high absorptance, in the ultraviolet. The wing scales strongly scatter in the visible wavelength range. The wing reflectance is virtually constant throughout the whole spectral range, with amplitude about 0.11 (b), and the wing substrate contains a small amount of pigment that absorbs in the UV (f).

Fig. 6.
Fig. 6.

Calculations of the reflectance, transmittance and absorptance of the dorsal (a) and ventral (b) scale layers, using the data of Fig. 5 and the formalism described in the Methods. c The reflectance and transmittance spectra measured from the intact wing [Figs. 5(a) and 5(c), DWV], Rm and Tm , are compared with the calculated spectra, Rc and Tc . The calculated reflectance (transmittance) is somewhat smaller (larger) than the measured reflectance (transmittance). The absorptances are calculated with A m,c=1 - R m,c - T m,c.

Fig. 7.
Fig. 7.

Reflectance and transmittance spectra measured with a microspectrophotometer of single cover and ground scales isolated from the dorsal as well as the ventral side of the forewing of a male Pieris rapae. a Reflectance spectra measured abwing, that is, with the illumination coming from the side of the ridges, which do not face the wing (see inset of b). The bold curve is the mean of the measured curves. b Reflectance spectra measured adwing, that is, with the illumination coming from the side of the scale that does not have ridges. The bold curve is the mean of the measured curves. The maximum scale reflectance, both abwing and adwing, is roughly 0.3. In the short wavelength range, the abwing reflectance (a) is more affected by the absorbing pterin pigment than the adwing reflectance (b). c Transmittance spectra measured with the scales immersed in xylene, to reduce scattering. The transmittance is low due to pterin pigment that absorbs strongly in the UV. The transmittance at 375 nm is about 0.15, meaning a peak absorbance of about 0.8. The bold curve (LB) is the transmittance spectrum calculated assuming Lambert-Beer’s law, taking the absorption spectrum derived from the average normalized absorptance curves of Figs. 5(e) and 5(f). The distinct difference between the measured curves and the bold curve demonstrates that the immersion fluid did not fully annihilate the refractive index differences. Inset b Transmission electron microscopic image of a wing scale of Pieris rapae. The abwing side has prominent ridges that are connected by cross-ribs. Beads adorn the latter structures. The adwing side is rather smooth, although regularly spaced protrusions exist, resembling minor ridges (see Ref. 11).

Fig. 8.
Fig. 8.

Reflectance spectra calculated for a set of identical scales stacked on the wing. The reflectance of the scaleless wing (W) is the average of the spectra Wd and Wv of Fig. 5(b). SW is the reflectance calculated for a single layer of scales at the wing, with the reflectance r taken to be the mean abwing reflectance of Fig. 5(b) and s is the mean adwing reflectance of Fig. 5(b). The illumination is from the side of the scale, S. SWS is the reflectance when single layers of scales exists on both sides of the wing. SSWS has two layers of scales on the side of the wing from which the illumination comes, and one layer of scales on the other side of the wing. SSWSS has two layers of scales on both sides of the wing, and SSSWS has three layers of scales on the illuminated wing side and two layers on the other side.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I 2 = r 1 I 1 + u 1 I 4 ; I 3 = t 1 I 1 + s 1 I 4 ; I 4 = r 2 I 3 + u 2 I 6 ; I 5 = t 2 I 3 + s 2 I 6 .
T = t 2 t 1 ( 1 s 1 r 2 ) and R = r 1 + t 1 u 1 r 2 ( 1 s 1 r 2 ) .
[ I 2 i I 2 i + 1 ] = A i [ I 2 i 1 I 2 i + 2 ] , with A i = [ r i u i t i s i ] for i = 1 n ,
τ i = t i ( 1 s i ρ i + 1 ) and ρ i = r i + u i ρ i + 1 τ i = r i + t i u i ρ i + 1 ( 1 s i ρ i + 1 ) .
T = i = 1 n τ i and R = ρ 1 .

Metrics