Abstract

In this study, we propose nano-grating surface plasmon resonance (NGSPR) sensors and show the design optimization process. NGSPR sensors with line width less than 50 nm show narrow reflection peaks from the excitation of localized surface plasmon polaritons. The wavelength of resonance reflection can be customized by adjusting the grating period. We predict that a refractive index sensitivity of more than 400 nm/RIU can be obtained using an optimized structure. Sharp reflection resonance peaks with FWHM of 0.03 eV will further enhance the sensitivity of the sensors. The simple optical configuration of normal incidence and high refractive index sensitivity make it possible for NGSPR sensors to be used as portable biosensors for high-throughput screening applications.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
    [CrossRef]
  2. J.-M. Jung, Y.-B. Shin, M.-G. Kim, H.-S. Ro, H.-T. Jung, and B. H. Chung, "A fusion protein expression analysis using surface plasmon resonance imaging," Anal. Biochem. 330, 251-256 (2004).
    [CrossRef] [PubMed]
  3. J. M. Brockman, B. P. Nelson, and R. M. Corn, "Surface plasmon resonance imaging measurements of ultrathin organic films," Annu. Rev. Phys. Chem. 51, 41-63 (2000).
    [CrossRef] [PubMed]
  4. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391,667-669 (1998).
    [CrossRef]
  5. K. Lance Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
    [CrossRef]
  6. N. Nath and A. Chilkoti, "A colorimetric gold nanoparticle sensor to interrogate Biomolecular interactions in real time on a surface," Anal. Chem. 74, 504-509 (2002).
    [CrossRef] [PubMed]
  7. S. Zou and G. C. Schatz, "Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays," J. Chem. Phys. 121, 12606-12612 (2004).
    [CrossRef] [PubMed]
  8. K. M. Byun, S. J. Kim, and D. Kim, "Design study of highly sensitive nanowire- enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis," Opt. Express 13, 3737-3742 (2005).
    [CrossRef] [PubMed]
  9. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  10. S. Zou, N. Janel, and G. C. Schatz, "Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes," J. Chem. Phys. 120, 10871-10875 (2004).
    [CrossRef] [PubMed]
  11. A. G. Brolo, R. Gordon, B. Leatherm, and K. L. Kavanagh, "Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films," Langmuir 20, 4813-4815 (2004).
    [CrossRef]
  12. Y. G. Sun, and Y. N. Xia, "Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm," Analyst 128, 686-691 (2003).
    [CrossRef] [PubMed]
  13. M. Duval Malinsky, K. Lance Kelly, G. C. Schatz, and R. P. Van Duyne, "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with Alkanethiol self-assembled monolayers," J. Am. Chem. Soc. 123, 1471-1482 (2001).
    [CrossRef]
  14. L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, "Localized surface Plasmon Resonance Spectroscopy of single silver nanocubes," Nano Lett. 5, 2034-2038 (2005).
    [CrossRef] [PubMed]
  15. J. Davies and I. Faulkner, Surface Analytical Techniques for Probing Biomaterial Processes (CRC Press, 1996), Chap. 3.
  16. E. M. Hicks, X. Zhang, S. Zou, O. Lyandres, K. G. Spears, G. C. Schatz, and R. P. Van Duyne, "Plasmonic properties of film over Nanowell surfaces fabricated by Nanosphere Lithographpy," J. Phys. Chem. B 109, 22351-22358 (2005).
    [CrossRef]

2005 (3)

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, "Localized surface Plasmon Resonance Spectroscopy of single silver nanocubes," Nano Lett. 5, 2034-2038 (2005).
[CrossRef] [PubMed]

E. M. Hicks, X. Zhang, S. Zou, O. Lyandres, K. G. Spears, G. C. Schatz, and R. P. Van Duyne, "Plasmonic properties of film over Nanowell surfaces fabricated by Nanosphere Lithographpy," J. Phys. Chem. B 109, 22351-22358 (2005).
[CrossRef]

K. M. Byun, S. J. Kim, and D. Kim, "Design study of highly sensitive nanowire- enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis," Opt. Express 13, 3737-3742 (2005).
[CrossRef] [PubMed]

2004 (4)

S. Zou and G. C. Schatz, "Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays," J. Chem. Phys. 121, 12606-12612 (2004).
[CrossRef] [PubMed]

J.-M. Jung, Y.-B. Shin, M.-G. Kim, H.-S. Ro, H.-T. Jung, and B. H. Chung, "A fusion protein expression analysis using surface plasmon resonance imaging," Anal. Biochem. 330, 251-256 (2004).
[CrossRef] [PubMed]

S. Zou, N. Janel, and G. C. Schatz, "Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes," J. Chem. Phys. 120, 10871-10875 (2004).
[CrossRef] [PubMed]

A. G. Brolo, R. Gordon, B. Leatherm, and K. L. Kavanagh, "Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films," Langmuir 20, 4813-4815 (2004).
[CrossRef]

2003 (2)

Y. G. Sun, and Y. N. Xia, "Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm," Analyst 128, 686-691 (2003).
[CrossRef] [PubMed]

K. Lance Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

2002 (1)

N. Nath and A. Chilkoti, "A colorimetric gold nanoparticle sensor to interrogate Biomolecular interactions in real time on a surface," Anal. Chem. 74, 504-509 (2002).
[CrossRef] [PubMed]

2001 (1)

M. Duval Malinsky, K. Lance Kelly, G. C. Schatz, and R. P. Van Duyne, "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with Alkanethiol self-assembled monolayers," J. Am. Chem. Soc. 123, 1471-1482 (2001).
[CrossRef]

2000 (1)

J. M. Brockman, B. P. Nelson, and R. M. Corn, "Surface plasmon resonance imaging measurements of ultrathin organic films," Annu. Rev. Phys. Chem. 51, 41-63 (2000).
[CrossRef] [PubMed]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391,667-669 (1998).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Brockman, J. M.

J. M. Brockman, B. P. Nelson, and R. M. Corn, "Surface plasmon resonance imaging measurements of ultrathin organic films," Annu. Rev. Phys. Chem. 51, 41-63 (2000).
[CrossRef] [PubMed]

Brolo, A. G.

A. G. Brolo, R. Gordon, B. Leatherm, and K. L. Kavanagh, "Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films," Langmuir 20, 4813-4815 (2004).
[CrossRef]

Byun, K. M.

Chang, S.-H.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, "Localized surface Plasmon Resonance Spectroscopy of single silver nanocubes," Nano Lett. 5, 2034-2038 (2005).
[CrossRef] [PubMed]

Chilkoti, A.

N. Nath and A. Chilkoti, "A colorimetric gold nanoparticle sensor to interrogate Biomolecular interactions in real time on a surface," Anal. Chem. 74, 504-509 (2002).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Chung, B. H.

J.-M. Jung, Y.-B. Shin, M.-G. Kim, H.-S. Ro, H.-T. Jung, and B. H. Chung, "A fusion protein expression analysis using surface plasmon resonance imaging," Anal. Biochem. 330, 251-256 (2004).
[CrossRef] [PubMed]

Corn, R. M.

J. M. Brockman, B. P. Nelson, and R. M. Corn, "Surface plasmon resonance imaging measurements of ultrathin organic films," Annu. Rev. Phys. Chem. 51, 41-63 (2000).
[CrossRef] [PubMed]

Coronado, E.

K. Lance Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

Duval Malinsky, M.

M. Duval Malinsky, K. Lance Kelly, G. C. Schatz, and R. P. Van Duyne, "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with Alkanethiol self-assembled monolayers," J. Am. Chem. Soc. 123, 1471-1482 (2001).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391,667-669 (1998).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391,667-669 (1998).
[CrossRef]

Gordon, R.

A. G. Brolo, R. Gordon, B. Leatherm, and K. L. Kavanagh, "Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films," Langmuir 20, 4813-4815 (2004).
[CrossRef]

Hicks, E. M.

E. M. Hicks, X. Zhang, S. Zou, O. Lyandres, K. G. Spears, G. C. Schatz, and R. P. Van Duyne, "Plasmonic properties of film over Nanowell surfaces fabricated by Nanosphere Lithographpy," J. Phys. Chem. B 109, 22351-22358 (2005).
[CrossRef]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Janel, N.

S. Zou, N. Janel, and G. C. Schatz, "Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes," J. Chem. Phys. 120, 10871-10875 (2004).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Jung, H.-T.

J.-M. Jung, Y.-B. Shin, M.-G. Kim, H.-S. Ro, H.-T. Jung, and B. H. Chung, "A fusion protein expression analysis using surface plasmon resonance imaging," Anal. Biochem. 330, 251-256 (2004).
[CrossRef] [PubMed]

Jung, J.-M.

J.-M. Jung, Y.-B. Shin, M.-G. Kim, H.-S. Ro, H.-T. Jung, and B. H. Chung, "A fusion protein expression analysis using surface plasmon resonance imaging," Anal. Biochem. 330, 251-256 (2004).
[CrossRef] [PubMed]

Kavanagh, K. L.

A. G. Brolo, R. Gordon, B. Leatherm, and K. L. Kavanagh, "Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films," Langmuir 20, 4813-4815 (2004).
[CrossRef]

Kim, D.

Kim, M.-G.

J.-M. Jung, Y.-B. Shin, M.-G. Kim, H.-S. Ro, H.-T. Jung, and B. H. Chung, "A fusion protein expression analysis using surface plasmon resonance imaging," Anal. Biochem. 330, 251-256 (2004).
[CrossRef] [PubMed]

Kim, S. J.

Lance Kelly, K.

K. Lance Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

M. Duval Malinsky, K. Lance Kelly, G. C. Schatz, and R. P. Van Duyne, "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with Alkanethiol self-assembled monolayers," J. Am. Chem. Soc. 123, 1471-1482 (2001).
[CrossRef]

Leatherm, B.

A. G. Brolo, R. Gordon, B. Leatherm, and K. L. Kavanagh, "Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films," Langmuir 20, 4813-4815 (2004).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391,667-669 (1998).
[CrossRef]

Lyandres, O.

E. M. Hicks, X. Zhang, S. Zou, O. Lyandres, K. G. Spears, G. C. Schatz, and R. P. Van Duyne, "Plasmonic properties of film over Nanowell surfaces fabricated by Nanosphere Lithographpy," J. Phys. Chem. B 109, 22351-22358 (2005).
[CrossRef]

Nath, N.

N. Nath and A. Chilkoti, "A colorimetric gold nanoparticle sensor to interrogate Biomolecular interactions in real time on a surface," Anal. Chem. 74, 504-509 (2002).
[CrossRef] [PubMed]

Nelson, B. P.

J. M. Brockman, B. P. Nelson, and R. M. Corn, "Surface plasmon resonance imaging measurements of ultrathin organic films," Annu. Rev. Phys. Chem. 51, 41-63 (2000).
[CrossRef] [PubMed]

Ro, H.-S.

J.-M. Jung, Y.-B. Shin, M.-G. Kim, H.-S. Ro, H.-T. Jung, and B. H. Chung, "A fusion protein expression analysis using surface plasmon resonance imaging," Anal. Biochem. 330, 251-256 (2004).
[CrossRef] [PubMed]

Schatz, G. C.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, "Localized surface Plasmon Resonance Spectroscopy of single silver nanocubes," Nano Lett. 5, 2034-2038 (2005).
[CrossRef] [PubMed]

E. M. Hicks, X. Zhang, S. Zou, O. Lyandres, K. G. Spears, G. C. Schatz, and R. P. Van Duyne, "Plasmonic properties of film over Nanowell surfaces fabricated by Nanosphere Lithographpy," J. Phys. Chem. B 109, 22351-22358 (2005).
[CrossRef]

S. Zou, N. Janel, and G. C. Schatz, "Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes," J. Chem. Phys. 120, 10871-10875 (2004).
[CrossRef] [PubMed]

S. Zou and G. C. Schatz, "Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays," J. Chem. Phys. 121, 12606-12612 (2004).
[CrossRef] [PubMed]

K. Lance Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

M. Duval Malinsky, K. Lance Kelly, G. C. Schatz, and R. P. Van Duyne, "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with Alkanethiol self-assembled monolayers," J. Am. Chem. Soc. 123, 1471-1482 (2001).
[CrossRef]

Sherry, L. J.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, "Localized surface Plasmon Resonance Spectroscopy of single silver nanocubes," Nano Lett. 5, 2034-2038 (2005).
[CrossRef] [PubMed]

Shin, Y.-B.

J.-M. Jung, Y.-B. Shin, M.-G. Kim, H.-S. Ro, H.-T. Jung, and B. H. Chung, "A fusion protein expression analysis using surface plasmon resonance imaging," Anal. Biochem. 330, 251-256 (2004).
[CrossRef] [PubMed]

Spears, K. G.

E. M. Hicks, X. Zhang, S. Zou, O. Lyandres, K. G. Spears, G. C. Schatz, and R. P. Van Duyne, "Plasmonic properties of film over Nanowell surfaces fabricated by Nanosphere Lithographpy," J. Phys. Chem. B 109, 22351-22358 (2005).
[CrossRef]

Sun, Y. G.

Y. G. Sun, and Y. N. Xia, "Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm," Analyst 128, 686-691 (2003).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391,667-669 (1998).
[CrossRef]

Van Duyne, R. P.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, "Localized surface Plasmon Resonance Spectroscopy of single silver nanocubes," Nano Lett. 5, 2034-2038 (2005).
[CrossRef] [PubMed]

E. M. Hicks, X. Zhang, S. Zou, O. Lyandres, K. G. Spears, G. C. Schatz, and R. P. Van Duyne, "Plasmonic properties of film over Nanowell surfaces fabricated by Nanosphere Lithographpy," J. Phys. Chem. B 109, 22351-22358 (2005).
[CrossRef]

M. Duval Malinsky, K. Lance Kelly, G. C. Schatz, and R. P. Van Duyne, "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with Alkanethiol self-assembled monolayers," J. Am. Chem. Soc. 123, 1471-1482 (2001).
[CrossRef]

Wiley, B. J.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, "Localized surface Plasmon Resonance Spectroscopy of single silver nanocubes," Nano Lett. 5, 2034-2038 (2005).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391,667-669 (1998).
[CrossRef]

Xia, Y.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, "Localized surface Plasmon Resonance Spectroscopy of single silver nanocubes," Nano Lett. 5, 2034-2038 (2005).
[CrossRef] [PubMed]

Xia, Y. N.

Y. G. Sun, and Y. N. Xia, "Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm," Analyst 128, 686-691 (2003).
[CrossRef] [PubMed]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Zhang, X.

E. M. Hicks, X. Zhang, S. Zou, O. Lyandres, K. G. Spears, G. C. Schatz, and R. P. Van Duyne, "Plasmonic properties of film over Nanowell surfaces fabricated by Nanosphere Lithographpy," J. Phys. Chem. B 109, 22351-22358 (2005).
[CrossRef]

Zhao, L. L.

K. Lance Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

Zou, S.

E. M. Hicks, X. Zhang, S. Zou, O. Lyandres, K. G. Spears, G. C. Schatz, and R. P. Van Duyne, "Plasmonic properties of film over Nanowell surfaces fabricated by Nanosphere Lithographpy," J. Phys. Chem. B 109, 22351-22358 (2005).
[CrossRef]

S. Zou, N. Janel, and G. C. Schatz, "Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes," J. Chem. Phys. 120, 10871-10875 (2004).
[CrossRef] [PubMed]

S. Zou and G. C. Schatz, "Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays," J. Chem. Phys. 121, 12606-12612 (2004).
[CrossRef] [PubMed]

Anal. Biochem. (1)

J.-M. Jung, Y.-B. Shin, M.-G. Kim, H.-S. Ro, H.-T. Jung, and B. H. Chung, "A fusion protein expression analysis using surface plasmon resonance imaging," Anal. Biochem. 330, 251-256 (2004).
[CrossRef] [PubMed]

Anal. Chem. (1)

N. Nath and A. Chilkoti, "A colorimetric gold nanoparticle sensor to interrogate Biomolecular interactions in real time on a surface," Anal. Chem. 74, 504-509 (2002).
[CrossRef] [PubMed]

Analyst (1)

Y. G. Sun, and Y. N. Xia, "Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm," Analyst 128, 686-691 (2003).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

J. M. Brockman, B. P. Nelson, and R. M. Corn, "Surface plasmon resonance imaging measurements of ultrathin organic films," Annu. Rev. Phys. Chem. 51, 41-63 (2000).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

M. Duval Malinsky, K. Lance Kelly, G. C. Schatz, and R. P. Van Duyne, "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with Alkanethiol self-assembled monolayers," J. Am. Chem. Soc. 123, 1471-1482 (2001).
[CrossRef]

J. Chem. Phys. (2)

S. Zou and G. C. Schatz, "Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays," J. Chem. Phys. 121, 12606-12612 (2004).
[CrossRef] [PubMed]

S. Zou, N. Janel, and G. C. Schatz, "Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes," J. Chem. Phys. 120, 10871-10875 (2004).
[CrossRef] [PubMed]

J. Phys. Chem. B (2)

K. Lance Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

E. M. Hicks, X. Zhang, S. Zou, O. Lyandres, K. G. Spears, G. C. Schatz, and R. P. Van Duyne, "Plasmonic properties of film over Nanowell surfaces fabricated by Nanosphere Lithographpy," J. Phys. Chem. B 109, 22351-22358 (2005).
[CrossRef]

Langmuir (1)

A. G. Brolo, R. Gordon, B. Leatherm, and K. L. Kavanagh, "Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films," Langmuir 20, 4813-4815 (2004).
[CrossRef]

Nano Lett. (1)

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, "Localized surface Plasmon Resonance Spectroscopy of single silver nanocubes," Nano Lett. 5, 2034-2038 (2005).
[CrossRef] [PubMed]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391,667-669 (1998).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Sens. Actuators B (1)

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Other (1)

J. Davies and I. Faulkner, Surface Analytical Techniques for Probing Biomaterial Processes (CRC Press, 1996), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic diagram of a nano-grating based reflection type SPR sensor

Fig. 2.
Fig. 2.

Calculated reflectance spectra of a NGSPR sensor in various refractive index conditions (Λ=400 nm, u=50 nm, d=40 nm, t=40 nm)

Fig. 3.
Fig. 3.

Calculated reflectance spectra of a NGSPR sensor in various refractive index conditions (Λ=500 nm, u=50 nm, d=40 nm, t=40 nm)

Fig. 4.
Fig. 4.

Calculated reflectance spectra of a NGSPR sensor in various refractive index conditions (Λ=600 nm, u=50 nm, d=40 nm, t=40 nm)

Fig. 5.
Fig. 5.

Calculated reflectance spectra of NGSPR sensors (Λ=500 nm, d=40 nm, t=40 nm) with a feature size of 25 nm (a), 50 nm (b), 100 nm (c), and 250 nm (d)

Fig. 6.
Fig. 6.

Calculated reflectance spectra of NGSPR sensors with various profiles and widths (Λ=500 nm, d=50 nm, t=50 nm, sample material is water)

Fig. 7.
Fig. 7.

Calculated reflectance spectra of NGSPR sensors (Λ=500 nm, u=50 nm, t=50 nm) with a grating depth of 30 nm (a), 40 nm (b), 50 nm (c), and 60 nm (d)

Fig. 8.
Fig. 8.

Calculated reflectance spectra of NGSPR sensors (Λ=500 nm, u=50 nm) with a metal layer thickness of 30 nm (a), 40 nm (b), 50 nm (c), and 60 nm (d)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

FOM = m ( eV RIU ) FWHM ( eV ) ,

Metrics