Abstract

We demonstrate the use of silicon photonic crystal based microcavity structures to perform light modulation at potentially giga-Hertz speeds through the use of optically induced plasma dispersion. The cavity configurations considered have the potential to operate at low pump power when the Q of the cavity involved is maximized.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. C. Ndi, J. Toulouse, T. Hodson, and D. W. Prather, "All optical switching in silicon photonic crystal waveguides by use of the plasma dispersion effect," Opt. Lett. 30, 2254 (2005).
    [CrossRef] [PubMed]
  2. R. A. Soref and B. R. Bennett, "Electro-optical effects in silicon," IEEE J. Quantum Electron. QE-23, 123 (1987).
    [CrossRef]
  3. J. Vuckovic and Y. Yamamoto, "Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot," Appl. Phys. Lett. 82, 2374 (2003).
    [CrossRef]
  4. K. Hennessy, C. Reese, A Badolato, C. F. Wang, A. Imamoglu, P. M. Petroff, E. Hu, G. Jin, S. Shi and D. W. Prather, "Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots," Appl. Phys. Lett. 83, 3650 (2003).
    [CrossRef]
  5. P. R. Villeneuve, D. S. Abrams, S Fan and J. D. Joannopoulos, "Single-mode waveguide microcavity for fast optical switching," Opt. Lett. 21, 2017 (1996).
    [CrossRef] [PubMed]
  6. S. Noda, A. Chutinan and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608 (2000).
    [CrossRef] [PubMed]
  7. D. W. Prather, J. Murakowski, S. Shi, S. Venkataraman, A. Sharkawy, C. Chen and D. Pustai, "High-efficiency coupling structure for a single-line-defect photonic-crystal waveguide," Opt. Lett. 27, 1601 (2002).
    [CrossRef]
  8. Francis. C. Ndi, unpublished results

2005 (1)

2003 (2)

J. Vuckovic and Y. Yamamoto, "Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot," Appl. Phys. Lett. 82, 2374 (2003).
[CrossRef]

K. Hennessy, C. Reese, A Badolato, C. F. Wang, A. Imamoglu, P. M. Petroff, E. Hu, G. Jin, S. Shi and D. W. Prather, "Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots," Appl. Phys. Lett. 83, 3650 (2003).
[CrossRef]

2002 (1)

2000 (1)

S. Noda, A. Chutinan and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608 (2000).
[CrossRef] [PubMed]

1996 (1)

1987 (1)

R. A. Soref and B. R. Bennett, "Electro-optical effects in silicon," IEEE J. Quantum Electron. QE-23, 123 (1987).
[CrossRef]

Abrams, D. S.

Badolato, A

K. Hennessy, C. Reese, A Badolato, C. F. Wang, A. Imamoglu, P. M. Petroff, E. Hu, G. Jin, S. Shi and D. W. Prather, "Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots," Appl. Phys. Lett. 83, 3650 (2003).
[CrossRef]

Bennett, B. R.

R. A. Soref and B. R. Bennett, "Electro-optical effects in silicon," IEEE J. Quantum Electron. QE-23, 123 (1987).
[CrossRef]

Chen, C.

Chutinan, A.

S. Noda, A. Chutinan and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608 (2000).
[CrossRef] [PubMed]

Fan, S

Hennessy, K.

K. Hennessy, C. Reese, A Badolato, C. F. Wang, A. Imamoglu, P. M. Petroff, E. Hu, G. Jin, S. Shi and D. W. Prather, "Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots," Appl. Phys. Lett. 83, 3650 (2003).
[CrossRef]

Hodson, T.

Hu, E.

K. Hennessy, C. Reese, A Badolato, C. F. Wang, A. Imamoglu, P. M. Petroff, E. Hu, G. Jin, S. Shi and D. W. Prather, "Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots," Appl. Phys. Lett. 83, 3650 (2003).
[CrossRef]

Imada, M.

S. Noda, A. Chutinan and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608 (2000).
[CrossRef] [PubMed]

Imamoglu, A.

K. Hennessy, C. Reese, A Badolato, C. F. Wang, A. Imamoglu, P. M. Petroff, E. Hu, G. Jin, S. Shi and D. W. Prather, "Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots," Appl. Phys. Lett. 83, 3650 (2003).
[CrossRef]

Jin, G.

K. Hennessy, C. Reese, A Badolato, C. F. Wang, A. Imamoglu, P. M. Petroff, E. Hu, G. Jin, S. Shi and D. W. Prather, "Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots," Appl. Phys. Lett. 83, 3650 (2003).
[CrossRef]

Joannopoulos, J. D.

Murakowski, J.

Ndi, F. C.

Noda, S.

S. Noda, A. Chutinan and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608 (2000).
[CrossRef] [PubMed]

Petroff, P. M.

K. Hennessy, C. Reese, A Badolato, C. F. Wang, A. Imamoglu, P. M. Petroff, E. Hu, G. Jin, S. Shi and D. W. Prather, "Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots," Appl. Phys. Lett. 83, 3650 (2003).
[CrossRef]

Prather, D. W.

Pustai, D.

Reese, C.

K. Hennessy, C. Reese, A Badolato, C. F. Wang, A. Imamoglu, P. M. Petroff, E. Hu, G. Jin, S. Shi and D. W. Prather, "Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots," Appl. Phys. Lett. 83, 3650 (2003).
[CrossRef]

Sharkawy, A.

Shi, S.

K. Hennessy, C. Reese, A Badolato, C. F. Wang, A. Imamoglu, P. M. Petroff, E. Hu, G. Jin, S. Shi and D. W. Prather, "Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots," Appl. Phys. Lett. 83, 3650 (2003).
[CrossRef]

D. W. Prather, J. Murakowski, S. Shi, S. Venkataraman, A. Sharkawy, C. Chen and D. Pustai, "High-efficiency coupling structure for a single-line-defect photonic-crystal waveguide," Opt. Lett. 27, 1601 (2002).
[CrossRef]

Soref, R. A.

R. A. Soref and B. R. Bennett, "Electro-optical effects in silicon," IEEE J. Quantum Electron. QE-23, 123 (1987).
[CrossRef]

Toulouse, J.

Venkataraman, S.

Villeneuve, P. R.

Vuckovic, J.

J. Vuckovic and Y. Yamamoto, "Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot," Appl. Phys. Lett. 82, 2374 (2003).
[CrossRef]

Wang, C. F.

K. Hennessy, C. Reese, A Badolato, C. F. Wang, A. Imamoglu, P. M. Petroff, E. Hu, G. Jin, S. Shi and D. W. Prather, "Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots," Appl. Phys. Lett. 83, 3650 (2003).
[CrossRef]

Yamamoto, Y.

J. Vuckovic and Y. Yamamoto, "Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot," Appl. Phys. Lett. 82, 2374 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

J. Vuckovic and Y. Yamamoto, "Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot," Appl. Phys. Lett. 82, 2374 (2003).
[CrossRef]

K. Hennessy, C. Reese, A Badolato, C. F. Wang, A. Imamoglu, P. M. Petroff, E. Hu, G. Jin, S. Shi and D. W. Prather, "Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots," Appl. Phys. Lett. 83, 3650 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, "Electro-optical effects in silicon," IEEE J. Quantum Electron. QE-23, 123 (1987).
[CrossRef]

Nature (1)

S. Noda, A. Chutinan and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608 (2000).
[CrossRef] [PubMed]

Opt. Lett. (3)

Other (1)

Francis. C. Ndi, unpublished results

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig 1.
Fig 1.

Experimental inline cavity structure

Fig. 2.
Fig. 2.

Measured transmission spectra of experimental sample of inline cavities. The cavity length, d, increased from sample4 to sample6.

Fig. 3.
Fig. 3.

Temporal response to excitation by a 30ps pulse at 532nm of the transmission of probe light. The probe was first set at 1545nm — solid curve (and then 1550nm — dotted curve), with the expectation that a plasma-induced blue shift in the spectrum would lead to an increase (decrease) in the transmission as observed. The inset shows a sub-nanosecond response of a photonic crystal waveguide to excitation by the Nd:YAG pulse (the rise-time is limited by the bandwidth of the oscilloscope) — demonstrating that GHz modulation speeds are achievable using such devices.

Fig. 4.
Fig. 4.

Side-coupled cavity configuration

Fig. 5.
Fig. 5.

Transmission spectrum of side coupled cavity showing a resonance at 1563nm

Fig. 6.
Fig. 6.

(a) High transmission at a non-resonant wavelength, illustrated by the scattered light at the input and output of waveguide. (b) At the resonant wavelength most of the light couples to the cavities and is scattered out-of-plane.

Fig. 7.
Fig. 7.

Transmission modulation near resonance using a 30ps optical pump pulse at 532nm.

Metrics