Abstract

We report on the generation of high energy femtosecond pulses at 1 MHz repetition rate from a fiber laser pumped optical parametric amplifier (OPA). Nonlinear bandwidth enhancement in fibers provides the intrinsically synchronized signal for the parametric amplifier. We demonstrate large tunability extending from 700 nm to 1500 nm of femtosecond pulses with pulse energies as high as 1.2 µJ when the OPA is seeded by a supercontinuum generated in a photonic crystal fiber. Broadband amplification over more than 85 nm is achieved at a fixed wavelength. Subsequent compression in a prism sequence resulted in 46 fs pulses. With an average power of 0.5 W these pulses have a peak-power above 10 MW. In particular, the average power and pulse energy scalability of both involved concepts, the fiber laser and the parametric amplifier, will enable easy up-scaling to higher powers

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Spence, P. N. Kean, and W. Sibbet, "60 fs pulse generation from a self-mode-locked Ti:Sapphire laser," Opt. Lett. 16, 42-44 (1991).
    [CrossRef] [PubMed]
  2. Http://www.femtosecondsystems.com.
  3. G. Cerullo and S. Silvestri, "Ultrafast optical parametric amplifiers," Review of Scientific Instruments 74, 1-18 (2003).
    [CrossRef]
  4. G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, "Sub-20 fs pulses tunable pulses in the visible from an 82 MHz optical parametric oscillator," Opt. Lett. 20, 1562-1564 (1995).
    [CrossRef] [PubMed]
  5. R. Danielius, A. Piskarskas, A. Stabinis, G. P. Banfi, P. D. Trapani, and R. Righini, "Travelling-wave parametric generation of widely tunable highly coherent femtosecond light pulses," J. Opt. Soc. Am. B 10, 2222-2232 (1993).
    [CrossRef]
  6. E. Riedle, M. Beuter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sp¨orlein, and W. Zinth, "Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR," Appl. Phys. B 71, 457-465 (2000).
    [CrossRef]
  7. S. Barkus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, "High power ultrafast lasers," Review of Scientific Instruments 69, 1207-1223 (1998).
    [CrossRef]
  8. F.  Röser, J. Rothhard, B. Ortac, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, "131 W 220 fs fiberlaser system," Opt. Lett. 30, 2754-2756 (2005).
    [CrossRef] [PubMed]
  9. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004).
    [CrossRef] [PubMed]
  10. L. Goldberg, J. P. Koplow, and D. A. V. Kliner, "Highly efficient 4-W Yb-doped fiber amplifier pumped by a broad-stripe laser diode," Opt. Lett. 24, 673-675 (1999).
    [CrossRef]
  11. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. T¨unnermann, J. Broeng, A. Petersson, and C. Jakobsen, "Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier," Opt. Express 12, 1313-1319 (2004).
    [CrossRef] [PubMed]
  12. T. Clausnitzer, J. Limpert, K. Z¨ollner, H. Zellmer, H.-J. Fuchs, E.-B. Kley, A. T¨unnermann, M. Jup, and D. Ristau, "Highly efficient trnasmission gratings in fused silica for chirpedpulse amplification systems," Applied Optics 42, 6934-6938 (2003).
    [CrossRef] [PubMed]
  13. Http://www.sandia.gov/imrl/X1118/xxtal.htm.
  14. Http://www.fiberdesk.com.
  15. A. Baltuska and T. Koayashi, "Adaptive shaping of two-cycle visible pulses using a flexible mirror," Appl. Phys. B 75, 427-443 (2002).
    [CrossRef]
  16. P. Baum, S. Lochenbrunner, and E. Riedle, "Generation of tunable 7-fs ultraviolet pulses:achromatic phasematchingand chirp management," Appl. Phys. B 75, 427-443 (2002).
  17. G. Cerullo, M. Nisoli, S. Stagira, and S. D. Silvestri, "Sub 8-fs pulses from an ultra broadband optical parametric amplifier in the visible," Opt. Lett. 23, 1283-1285 (1998).
    [CrossRef]
  18. M. Drescher,M. Hentschel, R. Kleinberger, G. Tempea, C. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, "X-ray pulses approaching the attosecond frontier," Science 291, 1923-1927 (2001).
    [CrossRef] [PubMed]
  19. C. P. Hauri, P. Schlup, G. Arisholm, J. Biegert, and U. Keller, "Phase-preserving chirped-pulse optical parametric amplification to 17.3 fs directly from a Ti:sapphire oscillator," Opt. Lett. 29, 1369-1371 (2004).
    [CrossRef] [PubMed]
  20. I. N. Ross, P. Matousek, G. H. C. New, and K. Osvay, "Analysis and optimization of optical parametric chirped pulse amplification," J. Opt. Soc. Am. B 19, 2945-2956 (2002).
    [CrossRef]
  21. L. Gardoso and G. Figueira, "Broadband amplification in non-linear crystals using controlled angular dispersion of signal beam," Opt. Commun. 251, 405-414 (2005).
    [CrossRef]
  22. J. Limpert, C. Aguergaray, S. Montant, I. Manek-H¨onninger, S. Petit, D. Descamps, E. Cormier, and F. Salin, "Ultra-broad bandwidth parametric amplification at degeneracy," Opt. Express 13, 7386-7392 (2005).
    [CrossRef] [PubMed]
  23. G. P. Agrawal, Nonlinear fiber optics, 3rd ed. (Academic Press, 2001).
  24. B. Schenkel, R. Paschotta, and U. Keller, "Pulse compression with supercontinuum generation in microstructure fibers," J. Opt. Soc. Am. B 22, 687 (2005).
    [CrossRef]
  25. J. Limpert, N. Deguil-Robin, I. Manek-H¨onninger, F. Salin, F. R¨oser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. T¨unnermann, J. Broeng, A. Petersson, and C. Jakobsen, "High-power rod-type photonic crystal fiber laser," Opt. Express 13, 1055-1058 (2005).
    [CrossRef] [PubMed]

2005

2004

2003

T. Clausnitzer, J. Limpert, K. Z¨ollner, H. Zellmer, H.-J. Fuchs, E.-B. Kley, A. T¨unnermann, M. Jup, and D. Ristau, "Highly efficient trnasmission gratings in fused silica for chirpedpulse amplification systems," Applied Optics 42, 6934-6938 (2003).
[CrossRef] [PubMed]

G. Cerullo and S. Silvestri, "Ultrafast optical parametric amplifiers," Review of Scientific Instruments 74, 1-18 (2003).
[CrossRef]

2002

A. Baltuska and T. Koayashi, "Adaptive shaping of two-cycle visible pulses using a flexible mirror," Appl. Phys. B 75, 427-443 (2002).
[CrossRef]

P. Baum, S. Lochenbrunner, and E. Riedle, "Generation of tunable 7-fs ultraviolet pulses:achromatic phasematchingand chirp management," Appl. Phys. B 75, 427-443 (2002).

I. N. Ross, P. Matousek, G. H. C. New, and K. Osvay, "Analysis and optimization of optical parametric chirped pulse amplification," J. Opt. Soc. Am. B 19, 2945-2956 (2002).
[CrossRef]

2001

M. Drescher,M. Hentschel, R. Kleinberger, G. Tempea, C. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, "X-ray pulses approaching the attosecond frontier," Science 291, 1923-1927 (2001).
[CrossRef] [PubMed]

2000

E. Riedle, M. Beuter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sp¨orlein, and W. Zinth, "Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR," Appl. Phys. B 71, 457-465 (2000).
[CrossRef]

1999

1998

S. Barkus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, "High power ultrafast lasers," Review of Scientific Instruments 69, 1207-1223 (1998).
[CrossRef]

G. Cerullo, M. Nisoli, S. Stagira, and S. D. Silvestri, "Sub 8-fs pulses from an ultra broadband optical parametric amplifier in the visible," Opt. Lett. 23, 1283-1285 (1998).
[CrossRef]

1995

1993

1991

Aguergaray, C.

Arisholm, G.

Baltuska, A.

A. Baltuska and T. Koayashi, "Adaptive shaping of two-cycle visible pulses using a flexible mirror," Appl. Phys. B 75, 427-443 (2002).
[CrossRef]

Banfi, G. P.

Barkus, S.

S. Barkus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, "High power ultrafast lasers," Review of Scientific Instruments 69, 1207-1223 (1998).
[CrossRef]

Baum, P.

P. Baum, S. Lochenbrunner, and E. Riedle, "Generation of tunable 7-fs ultraviolet pulses:achromatic phasematchingand chirp management," Appl. Phys. B 75, 427-443 (2002).

Beuter, M.

E. Riedle, M. Beuter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sp¨orlein, and W. Zinth, "Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR," Appl. Phys. B 71, 457-465 (2000).
[CrossRef]

Biegert, J.

Cavallari, M.

Cerullo, G.

Clausnitzer, T.

T. Clausnitzer, J. Limpert, K. Z¨ollner, H. Zellmer, H.-J. Fuchs, E.-B. Kley, A. T¨unnermann, M. Jup, and D. Ristau, "Highly efficient trnasmission gratings in fused silica for chirpedpulse amplification systems," Applied Optics 42, 6934-6938 (2003).
[CrossRef] [PubMed]

Corkum, P. B.

M. Drescher,M. Hentschel, R. Kleinberger, G. Tempea, C. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, "X-ray pulses approaching the attosecond frontier," Science 291, 1923-1927 (2001).
[CrossRef] [PubMed]

Danielius, R.

Deguil-Robin, N.

Drescher, M.

M. Drescher,M. Hentschel, R. Kleinberger, G. Tempea, C. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, "X-ray pulses approaching the attosecond frontier," Science 291, 1923-1927 (2001).
[CrossRef] [PubMed]

Driscoll, T. J.

Durfee, C. G.

S. Barkus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, "High power ultrafast lasers," Review of Scientific Instruments 69, 1207-1223 (1998).
[CrossRef]

Figueira, G.

L. Gardoso and G. Figueira, "Broadband amplification in non-linear crystals using controlled angular dispersion of signal beam," Opt. Commun. 251, 405-414 (2005).
[CrossRef]

Gale, G. M.

Gardoso, L.

L. Gardoso and G. Figueira, "Broadband amplification in non-linear crystals using controlled angular dispersion of signal beam," Opt. Commun. 251, 405-414 (2005).
[CrossRef]

Goldberg, L.

Hache, F.

Hauri, C. P.

Hentschel, M.

M. Drescher,M. Hentschel, R. Kleinberger, G. Tempea, C. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, "X-ray pulses approaching the attosecond frontier," Science 291, 1923-1927 (2001).
[CrossRef] [PubMed]

Jeong, Y.

Kapteyn, H. C.

S. Barkus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, "High power ultrafast lasers," Review of Scientific Instruments 69, 1207-1223 (1998).
[CrossRef]

Kean, P. N.

Keller, U.

Kleinberger, R.

M. Drescher,M. Hentschel, R. Kleinberger, G. Tempea, C. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, "X-ray pulses approaching the attosecond frontier," Science 291, 1923-1927 (2001).
[CrossRef] [PubMed]

Kliner, D. A. V.

Koayashi, T.

A. Baltuska and T. Koayashi, "Adaptive shaping of two-cycle visible pulses using a flexible mirror," Appl. Phys. B 75, 427-443 (2002).
[CrossRef]

Koplow, J. P.

Krausz, F.

M. Drescher,M. Hentschel, R. Kleinberger, G. Tempea, C. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, "X-ray pulses approaching the attosecond frontier," Science 291, 1923-1927 (2001).
[CrossRef] [PubMed]

Liem, A.

Limpert, , J.

Limpert, J.

Lochbrunner, S.

E. Riedle, M. Beuter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sp¨orlein, and W. Zinth, "Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR," Appl. Phys. B 71, 457-465 (2000).
[CrossRef]

Lochenbrunner, S.

P. Baum, S. Lochenbrunner, and E. Riedle, "Generation of tunable 7-fs ultraviolet pulses:achromatic phasematchingand chirp management," Appl. Phys. B 75, 427-443 (2002).

Manek-H, I.

Matousek, P.

Montant, S.

Murnane, M. M.

S. Barkus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, "High power ultrafast lasers," Review of Scientific Instruments 69, 1207-1223 (1998).
[CrossRef]

New, G. H. C.

Nilsson, J.

Nisoli, M.

Nolte, S.

Ortac, , B.

Osvay, K.

Paschotta, R.

Payne, D. N.

Piel, J.

E. Riedle, M. Beuter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sp¨orlein, and W. Zinth, "Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR," Appl. Phys. B 71, 457-465 (2000).
[CrossRef]

Piskarskas, A.

Reich, M.

Reider, G. A.

M. Drescher,M. Hentschel, R. Kleinberger, G. Tempea, C. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, "X-ray pulses approaching the attosecond frontier," Science 291, 1923-1927 (2001).
[CrossRef] [PubMed]

Riedle, E.

P. Baum, S. Lochenbrunner, and E. Riedle, "Generation of tunable 7-fs ultraviolet pulses:achromatic phasematchingand chirp management," Appl. Phys. B 75, 427-443 (2002).

E. Riedle, M. Beuter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sp¨orlein, and W. Zinth, "Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR," Appl. Phys. B 71, 457-465 (2000).
[CrossRef]

Righini, R.

Röser, F.

Ross, I. N.

Rothhard, , J.

Sahu, J. K.

Schenkel, B.

Schenkl, S.

E. Riedle, M. Beuter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sp¨orlein, and W. Zinth, "Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR," Appl. Phys. B 71, 457-465 (2000).
[CrossRef]

Schlup, P.

Schmidt, , O.

Schreiber, , T.

Schreiber, T.

Sibbet, W.

Silvestri, S.

G. Cerullo and S. Silvestri, "Ultrafast optical parametric amplifiers," Review of Scientific Instruments 74, 1-18 (2003).
[CrossRef]

Silvestri, S. D.

Spence, D. E.

Spielmann, C.

M. Drescher,M. Hentschel, R. Kleinberger, G. Tempea, C. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, "X-ray pulses approaching the attosecond frontier," Science 291, 1923-1927 (2001).
[CrossRef] [PubMed]

Stabinis, A.

Stagira, S.

Tempea, G.

M. Drescher,M. Hentschel, R. Kleinberger, G. Tempea, C. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, "X-ray pulses approaching the attosecond frontier," Science 291, 1923-1927 (2001).
[CrossRef] [PubMed]

Trapani, P. D.

Tünnermann, A.

Zellmer, H.

Appl. Phys. B

E. Riedle, M. Beuter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sp¨orlein, and W. Zinth, "Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR," Appl. Phys. B 71, 457-465 (2000).
[CrossRef]

A. Baltuska and T. Koayashi, "Adaptive shaping of two-cycle visible pulses using a flexible mirror," Appl. Phys. B 75, 427-443 (2002).
[CrossRef]

P. Baum, S. Lochenbrunner, and E. Riedle, "Generation of tunable 7-fs ultraviolet pulses:achromatic phasematchingand chirp management," Appl. Phys. B 75, 427-443 (2002).

Applied Optics

T. Clausnitzer, J. Limpert, K. Z¨ollner, H. Zellmer, H.-J. Fuchs, E.-B. Kley, A. T¨unnermann, M. Jup, and D. Ristau, "Highly efficient trnasmission gratings in fused silica for chirpedpulse amplification systems," Applied Optics 42, 6934-6938 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

Opt. Commun.

L. Gardoso and G. Figueira, "Broadband amplification in non-linear crystals using controlled angular dispersion of signal beam," Opt. Commun. 251, 405-414 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Review of Scientific Instruments

G. Cerullo and S. Silvestri, "Ultrafast optical parametric amplifiers," Review of Scientific Instruments 74, 1-18 (2003).
[CrossRef]

S. Barkus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, "High power ultrafast lasers," Review of Scientific Instruments 69, 1207-1223 (1998).
[CrossRef]

Science

M. Drescher,M. Hentschel, R. Kleinberger, G. Tempea, C. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, "X-ray pulses approaching the attosecond frontier," Science 291, 1923-1927 (2001).
[CrossRef] [PubMed]

Other

Http://www.sandia.gov/imrl/X1118/xxtal.htm.

Http://www.fiberdesk.com.

Http://www.femtosecondsystems.com.

G. P. Agrawal, Nonlinear fiber optics, 3rd ed. (Academic Press, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental setup of the high repetition rate tunable femtosecond source. Iso: optical isolator, HWP: half-wave plate, QWP: quarter-wave plate, AOM: acousto-optic modulator, BS: beam splitter, PCF: photonic crystal fiber, OSA: optical spectrum analyzer

Fig. 2.
Fig. 2.

Slope efficiency of the fiber amplifier and resulting second harmonic power as functions of pump power coupled into the fiber.

Fig. 3.
Fig. 3.

a) Broadband phase-matching for a type I BBO crystal pumped at 514 nm with a pump tilt angle of 2.6°. b) Amplification in the wavelength range 650–1000 nm by changing the temporal delay between pump and signal.

Fig. 4.
Fig. 4.

Simulated spectrogram of the supercontinuum generated in 80 cm of the PCF for the spectral range of 620 nm to 1040 nm. Time is measured relative to the 1028 nm center wavelength.

Fig. 5.
Fig. 5.

a) Phasematching as found experimentally and calculated using SNLO software when the angle between pump and signal is 4.9°. b) Autocorrelation trace when the center wavelength is approximately 930 nm. The pulse has a FWHM of 230 fs.

Fig. 6.
Fig. 6.

a) Signal conversion efficiency at a pump power of 3.3 W at 514 nm. Right: Beam profile at b) 30 % and c) 10 % conversion. The difference in spot-size is due to different scaling of the images.

Fig. 7.
Fig. 7.

a) Spectrum after 9.1 cm of standard fiber (dotted black) and after amplification in the BBO crystal (red). b) Autocorrelation trace of the 46 fs re-compressed pulse.

Metrics