Abstract

Second harmonic generation microscopy(SHGM) has become widely used to image biological samples. Due to the complexity of biological samples, more and more effort has been put on polarization imaging in SHGM technology to uncover their structures. In this work, we put forward a novel stitching method based on careful mathematical calculation, and accomplish it by rotating laser polarization. We first show its validity in imaging a perfectly synthesized bio-origin polymer poly (3-hyroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx). Then, we test its power by getting a true image of fibrillar collagen structure of rat-tail tendon.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-resolved Second Harmonic microscopy in anisotropic thick tissues

Ivan Gusachenko, Gaël Latour, and Marie-Claire Schanne-Klein
Opt. Express 18(18) 19339-19352 (2010)

Multi-view second-harmonic generation imaging of mouse tail tendon via reflective micro-prisms

Bruce Wen, Kirby R. Campbell, Benjamin L. Cox, Kevin W. Eliceiri, Richard Superfine, and Paul J. Campagnola
Opt. Lett. 40(13) 3201-3204 (2015)

Coherent and incoherent SHG in fibrillar cellulose matrices

Oleg Nadiarnykh, Ronald LaComb, Paul J. Campagnola, and William A. Mohler
Opt. Express 15(6) 3348-3360 (2007)

References

  • View by:
  • |
  • |
  • |

  1. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
    [Crossref]
  2. R. Hellwarth and P. Christensen, “Nonlinear optical microscopic examination of structure in polycrystalline ZnSe,” Opt. Commun. 12, 318–322 (1974)
    [Crossref]
  3. S. Roth and I. Freund, “Second harmonic in collagen,” J. Chem. Phys. 70, 1637–1643 (1979)
    [Crossref]
  4. G. Cox, E. Kable, A. Jones, I. K. Fraser, F. Manconi, and M. D. Gorrell, “3-dimensional imaging of collagen using second harmonic generation,” J. Structural Biol. 141, 53–62 (2003)
    [Crossref]
  5. I. Freund, M. Deutsch, and A. Sprecher, “Connective Tissue Polarity Optical Second-harmonic Microscopy, Crossed-beam Summation, and Small-angle Scattering in Rat-tail Tendon,” Biophy. J. 50, 693–712 (1986)
    [Crossref]
  6. B. M. Kim, J. Eichler, and L. B. Da Silva, “Frequency doubling of ultrashort laser pulses in biological tissues,” Appl. Opt. 38, 7145–7150 (1999)
    [Crossref]
  7. T. Yasui, Y. Tohno, and T. Araki, “Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry,” J. Biomed. Opt. 9, 259–264 (2004).
    [Crossref] [PubMed]
  8. S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, “Studies of x((2))/x((3)) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophy. J. 86, 3914–3922 (2004)
    [Crossref]
  9. T. Yasui, Y. Tohno, and T. Araki “Determination of collagen fiber orientation in human tissue by use of polarization measurement of molecular second-harmonic-generation light,” Appl. Opt. 43, 2861–2867 (2004)
    [Crossref] [PubMed]
  10. P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophy. J. 82, 3330–3342 (2002)
    [Crossref]
  11. R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophy. J. 881377–1386 (2005)
    [Crossref]
  12. Y. Z. Qiu, S. P. Ouyang, Z. Y. Shen, Q. Wu, and G. Q. Chen, “Metabolic engineering for the production of copolyesters consisting of 3-hydroxybutyrate and 3-hydroxyhexanoate by Aeromonas hydrophila,” Macromol. Biosci 4255–261 (2004)
    [Crossref] [PubMed]
  13. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophy. J. 82, 493–508 (2002).
    [Crossref]
  14. S. W. Chu, S. Y. Chen, T. H. Tsai, T. M. Liu, C. Y. Lin, H. J. Tsai, and C. K. Sun, “In vivo developmental biology study using noninvasive multi-harmonic generation microscopy,” Opt. Express 11, 3093–3099 (2003).
    [Crossref] [PubMed]

2005 (1)

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophy. J. 881377–1386 (2005)
[Crossref]

2004 (4)

Y. Z. Qiu, S. P. Ouyang, Z. Y. Shen, Q. Wu, and G. Q. Chen, “Metabolic engineering for the production of copolyesters consisting of 3-hydroxybutyrate and 3-hydroxyhexanoate by Aeromonas hydrophila,” Macromol. Biosci 4255–261 (2004)
[Crossref] [PubMed]

T. Yasui, Y. Tohno, and T. Araki, “Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry,” J. Biomed. Opt. 9, 259–264 (2004).
[Crossref] [PubMed]

S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, “Studies of x((2))/x((3)) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophy. J. 86, 3914–3922 (2004)
[Crossref]

T. Yasui, Y. Tohno, and T. Araki “Determination of collagen fiber orientation in human tissue by use of polarization measurement of molecular second-harmonic-generation light,” Appl. Opt. 43, 2861–2867 (2004)
[Crossref] [PubMed]

2003 (2)

G. Cox, E. Kable, A. Jones, I. K. Fraser, F. Manconi, and M. D. Gorrell, “3-dimensional imaging of collagen using second harmonic generation,” J. Structural Biol. 141, 53–62 (2003)
[Crossref]

S. W. Chu, S. Y. Chen, T. H. Tsai, T. M. Liu, C. Y. Lin, H. J. Tsai, and C. K. Sun, “In vivo developmental biology study using noninvasive multi-harmonic generation microscopy,” Opt. Express 11, 3093–3099 (2003).
[Crossref] [PubMed]

2002 (2)

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophy. J. 82, 493–508 (2002).
[Crossref]

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophy. J. 82, 3330–3342 (2002)
[Crossref]

1999 (1)

1986 (1)

I. Freund, M. Deutsch, and A. Sprecher, “Connective Tissue Polarity Optical Second-harmonic Microscopy, Crossed-beam Summation, and Small-angle Scattering in Rat-tail Tendon,” Biophy. J. 50, 693–712 (1986)
[Crossref]

1979 (1)

S. Roth and I. Freund, “Second harmonic in collagen,” J. Chem. Phys. 70, 1637–1643 (1979)
[Crossref]

1974 (1)

R. Hellwarth and P. Christensen, “Nonlinear optical microscopic examination of structure in polycrystalline ZnSe,” Opt. Commun. 12, 318–322 (1974)
[Crossref]

1961 (1)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[Crossref]

Araki, T.

T. Yasui, Y. Tohno, and T. Araki, “Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry,” J. Biomed. Opt. 9, 259–264 (2004).
[Crossref] [PubMed]

T. Yasui, Y. Tohno, and T. Araki “Determination of collagen fiber orientation in human tissue by use of polarization measurement of molecular second-harmonic-generation light,” Appl. Opt. 43, 2861–2867 (2004)
[Crossref] [PubMed]

Campagnola, P. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophy. J. 82, 493–508 (2002).
[Crossref]

Celliers, P. M.

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophy. J. 82, 3330–3342 (2002)
[Crossref]

Chen, G. Q.

Y. Z. Qiu, S. P. Ouyang, Z. Y. Shen, Q. Wu, and G. Q. Chen, “Metabolic engineering for the production of copolyesters consisting of 3-hydroxybutyrate and 3-hydroxyhexanoate by Aeromonas hydrophila,” Macromol. Biosci 4255–261 (2004)
[Crossref] [PubMed]

Chen, S. Y.

S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, “Studies of x((2))/x((3)) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophy. J. 86, 3914–3922 (2004)
[Crossref]

S. W. Chu, S. Y. Chen, T. H. Tsai, T. M. Liu, C. Y. Lin, H. J. Tsai, and C. K. Sun, “In vivo developmental biology study using noninvasive multi-harmonic generation microscopy,” Opt. Express 11, 3093–3099 (2003).
[Crossref] [PubMed]

Chen, Y. C.

S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, “Studies of x((2))/x((3)) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophy. J. 86, 3914–3922 (2004)
[Crossref]

Chern, G. W.

S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, “Studies of x((2))/x((3)) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophy. J. 86, 3914–3922 (2004)
[Crossref]

Christensen, P.

R. Hellwarth and P. Christensen, “Nonlinear optical microscopic examination of structure in polycrystalline ZnSe,” Opt. Commun. 12, 318–322 (1974)
[Crossref]

Chu, S. W.

S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, “Studies of x((2))/x((3)) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophy. J. 86, 3914–3922 (2004)
[Crossref]

S. W. Chu, S. Y. Chen, T. H. Tsai, T. M. Liu, C. Y. Lin, H. J. Tsai, and C. K. Sun, “In vivo developmental biology study using noninvasive multi-harmonic generation microscopy,” Opt. Express 11, 3093–3099 (2003).
[Crossref] [PubMed]

Cox, G.

G. Cox, E. Kable, A. Jones, I. K. Fraser, F. Manconi, and M. D. Gorrell, “3-dimensional imaging of collagen using second harmonic generation,” J. Structural Biol. 141, 53–62 (2003)
[Crossref]

Da Silva, L. B.

Deutsch, M.

I. Freund, M. Deutsch, and A. Sprecher, “Connective Tissue Polarity Optical Second-harmonic Microscopy, Crossed-beam Summation, and Small-angle Scattering in Rat-tail Tendon,” Biophy. J. 50, 693–712 (1986)
[Crossref]

Eichler, J.

Franken, P. A.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[Crossref]

Fraser, I. K.

G. Cox, E. Kable, A. Jones, I. K. Fraser, F. Manconi, and M. D. Gorrell, “3-dimensional imaging of collagen using second harmonic generation,” J. Structural Biol. 141, 53–62 (2003)
[Crossref]

Freund, I.

I. Freund, M. Deutsch, and A. Sprecher, “Connective Tissue Polarity Optical Second-harmonic Microscopy, Crossed-beam Summation, and Small-angle Scattering in Rat-tail Tendon,” Biophy. J. 50, 693–712 (1986)
[Crossref]

S. Roth and I. Freund, “Second harmonic in collagen,” J. Chem. Phys. 70, 1637–1643 (1979)
[Crossref]

Gorrell, M. D.

G. Cox, E. Kable, A. Jones, I. K. Fraser, F. Manconi, and M. D. Gorrell, “3-dimensional imaging of collagen using second harmonic generation,” J. Structural Biol. 141, 53–62 (2003)
[Crossref]

Hellwarth, R.

R. Hellwarth and P. Christensen, “Nonlinear optical microscopic examination of structure in polycrystalline ZnSe,” Opt. Commun. 12, 318–322 (1974)
[Crossref]

Hill, A. E.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[Crossref]

Hoppe, P. E.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophy. J. 82, 493–508 (2002).
[Crossref]

Jones, A.

G. Cox, E. Kable, A. Jones, I. K. Fraser, F. Manconi, and M. D. Gorrell, “3-dimensional imaging of collagen using second harmonic generation,” J. Structural Biol. 141, 53–62 (2003)
[Crossref]

Kable, E.

G. Cox, E. Kable, A. Jones, I. K. Fraser, F. Manconi, and M. D. Gorrell, “3-dimensional imaging of collagen using second harmonic generation,” J. Structural Biol. 141, 53–62 (2003)
[Crossref]

Kim, B. M.

Lin, B. L.

S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, “Studies of x((2))/x((3)) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophy. J. 86, 3914–3922 (2004)
[Crossref]

Lin, C. Y.

Liu, T. M.

Malone, C. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophy. J. 82, 493–508 (2002).
[Crossref]

Manconi, F.

G. Cox, E. Kable, A. Jones, I. K. Fraser, F. Manconi, and M. D. Gorrell, “3-dimensional imaging of collagen using second harmonic generation,” J. Structural Biol. 141, 53–62 (2003)
[Crossref]

Millard, A. C.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophy. J. 82, 493–508 (2002).
[Crossref]

Mohler, W. A.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophy. J. 82, 493–508 (2002).
[Crossref]

Ouyang, S. P.

Y. Z. Qiu, S. P. Ouyang, Z. Y. Shen, Q. Wu, and G. Q. Chen, “Metabolic engineering for the production of copolyesters consisting of 3-hydroxybutyrate and 3-hydroxyhexanoate by Aeromonas hydrophila,” Macromol. Biosci 4255–261 (2004)
[Crossref] [PubMed]

Peters, C. W.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[Crossref]

Qiu, Y. Z.

Y. Z. Qiu, S. P. Ouyang, Z. Y. Shen, Q. Wu, and G. Q. Chen, “Metabolic engineering for the production of copolyesters consisting of 3-hydroxybutyrate and 3-hydroxyhexanoate by Aeromonas hydrophila,” Macromol. Biosci 4255–261 (2004)
[Crossref] [PubMed]

Reiser, K. M.

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophy. J. 82, 3330–3342 (2002)
[Crossref]

Roth, S.

S. Roth and I. Freund, “Second harmonic in collagen,” J. Chem. Phys. 70, 1637–1643 (1979)
[Crossref]

Rubenchik, A. M.

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophy. J. 82, 3330–3342 (2002)
[Crossref]

Shen, Z. Y.

Y. Z. Qiu, S. P. Ouyang, Z. Y. Shen, Q. Wu, and G. Q. Chen, “Metabolic engineering for the production of copolyesters consisting of 3-hydroxybutyrate and 3-hydroxyhexanoate by Aeromonas hydrophila,” Macromol. Biosci 4255–261 (2004)
[Crossref] [PubMed]

Sprecher, A.

I. Freund, M. Deutsch, and A. Sprecher, “Connective Tissue Polarity Optical Second-harmonic Microscopy, Crossed-beam Summation, and Small-angle Scattering in Rat-tail Tendon,” Biophy. J. 50, 693–712 (1986)
[Crossref]

Stoller, P.

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophy. J. 82, 3330–3342 (2002)
[Crossref]

Sun, C. K.

S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, “Studies of x((2))/x((3)) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophy. J. 86, 3914–3922 (2004)
[Crossref]

S. W. Chu, S. Y. Chen, T. H. Tsai, T. M. Liu, C. Y. Lin, H. J. Tsai, and C. K. Sun, “In vivo developmental biology study using noninvasive multi-harmonic generation microscopy,” Opt. Express 11, 3093–3099 (2003).
[Crossref] [PubMed]

Terasaki, M.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophy. J. 82, 493–508 (2002).
[Crossref]

Tohno, Y.

T. Yasui, Y. Tohno, and T. Araki “Determination of collagen fiber orientation in human tissue by use of polarization measurement of molecular second-harmonic-generation light,” Appl. Opt. 43, 2861–2867 (2004)
[Crossref] [PubMed]

T. Yasui, Y. Tohno, and T. Araki, “Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry,” J. Biomed. Opt. 9, 259–264 (2004).
[Crossref] [PubMed]

Tsai, H. J.

Tsai, T. H.

S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, “Studies of x((2))/x((3)) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophy. J. 86, 3914–3922 (2004)
[Crossref]

S. W. Chu, S. Y. Chen, T. H. Tsai, T. M. Liu, C. Y. Lin, H. J. Tsai, and C. K. Sun, “In vivo developmental biology study using noninvasive multi-harmonic generation microscopy,” Opt. Express 11, 3093–3099 (2003).
[Crossref] [PubMed]

Webb, W. W.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophy. J. 881377–1386 (2005)
[Crossref]

Weinreich, G.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[Crossref]

Williams, R. M.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophy. J. 881377–1386 (2005)
[Crossref]

Wu, Q.

Y. Z. Qiu, S. P. Ouyang, Z. Y. Shen, Q. Wu, and G. Q. Chen, “Metabolic engineering for the production of copolyesters consisting of 3-hydroxybutyrate and 3-hydroxyhexanoate by Aeromonas hydrophila,” Macromol. Biosci 4255–261 (2004)
[Crossref] [PubMed]

Yasui, T.

T. Yasui, Y. Tohno, and T. Araki “Determination of collagen fiber orientation in human tissue by use of polarization measurement of molecular second-harmonic-generation light,” Appl. Opt. 43, 2861–2867 (2004)
[Crossref] [PubMed]

T. Yasui, Y. Tohno, and T. Araki, “Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry,” J. Biomed. Opt. 9, 259–264 (2004).
[Crossref] [PubMed]

Zipfel, W. R.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophy. J. 881377–1386 (2005)
[Crossref]

Appl. Opt. (2)

Biophy. J. (5)

S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, “Studies of x((2))/x((3)) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophy. J. 86, 3914–3922 (2004)
[Crossref]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophy. J. 82, 493–508 (2002).
[Crossref]

I. Freund, M. Deutsch, and A. Sprecher, “Connective Tissue Polarity Optical Second-harmonic Microscopy, Crossed-beam Summation, and Small-angle Scattering in Rat-tail Tendon,” Biophy. J. 50, 693–712 (1986)
[Crossref]

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophy. J. 82, 3330–3342 (2002)
[Crossref]

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophy. J. 881377–1386 (2005)
[Crossref]

J. Biomed. Opt. (1)

T. Yasui, Y. Tohno, and T. Araki, “Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry,” J. Biomed. Opt. 9, 259–264 (2004).
[Crossref] [PubMed]

J. Chem. Phys. (1)

S. Roth and I. Freund, “Second harmonic in collagen,” J. Chem. Phys. 70, 1637–1643 (1979)
[Crossref]

J. Structural Biol. (1)

G. Cox, E. Kable, A. Jones, I. K. Fraser, F. Manconi, and M. D. Gorrell, “3-dimensional imaging of collagen using second harmonic generation,” J. Structural Biol. 141, 53–62 (2003)
[Crossref]

Macromol. Biosci (1)

Y. Z. Qiu, S. P. Ouyang, Z. Y. Shen, Q. Wu, and G. Q. Chen, “Metabolic engineering for the production of copolyesters consisting of 3-hydroxybutyrate and 3-hydroxyhexanoate by Aeromonas hydrophila,” Macromol. Biosci 4255–261 (2004)
[Crossref] [PubMed]

Opt. Commun. (1)

R. Hellwarth and P. Christensen, “Nonlinear optical microscopic examination of structure in polycrystalline ZnSe,” Opt. Commun. 12, 318–322 (1974)
[Crossref]

Opt. Express (1)

Phys. Rev. Lett. (1)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Illustration of fiber orientation and laser beam propagation direction and polarization

Fig. 2.
Fig. 2.

Angle α dependence of SHG signal for collagen in three complementary images and stitched image (α here represents the angle between the laser polarization and axis of collagen in the first measurement, which we can not predict). Under an arbitrary α, we get the first picture. Then we rotate the half wave plate to make this angle increase π/3 in the second measurement and 2π/3 in the third measurement to get the second and third pictures. S1, S2, S3 and Sum stands for the SHG intensity depending on initial angle α in these complementary images and final stitched image respectively(S1, S2, S3 have been normalized).

Fig. 3.
Fig. 3.

Experimental setup. PMT: photomultiplier; GL: Glan polarizer lens. The SHG signal is collective in the forward direction. GL is used to make the incident laser purely polarized. Half wave plate is used to rotate the laser polarization to the angle we need.

Fig. 4.
Fig. 4.

Stitching SHG images of PHBHHx. (a), (b), (c) are three complementary SHG images and are obtained under linear polarized laser, in which angles between laser polarization and the axis of PHBHHx are α, α+π/3, α+2π/3 respectively. (d) is the final stitched image of three complementary images. Scale bar: 30µm

Fig. 5.
Fig. 5.

Stitching SHG images of collagen. (a), (b), (c) are three complementary SHG images and are obtained under linear polarized laser, in which angles between laser polarization and the axis of collagen are α, α+π/3, α+2π/3 respectively. (d) is the final stitched image of three complementary images. Scale bar: 15µm

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

I SHG ( P · s ) 2 + ( P · ( s × k ) ) 2
I 1 2 ( 3 + 20 γ + 40 γ 2 ) + 1 2 ( 1 + 6 γ + 8 γ 2 ) cos 2 α + 1 8 ( 1 + 4 γ ) cos 4 α
Δ ϕ = 2 π f Δ t
I total = B α 0 α 0 + Δ ϕ [ 1 8 ( 3 + 20 γ + 40 γ 2 ) + 1 2 ( 1 + 6 γ + 8 γ 2 ) cos 2 α + 1 8 ( 1 + 4 γ ) cos 4 α ] d α
I total = B [ 1 8 Δ ϕ ( 3 + 20 γ + 40 γ 2 )
+ 1 4 ( 1 + 6 γ + 8 γ 2 ) sin 2 α α 0 α 0 + Δ ϕ + 1 32 ( 1 + 4 γ ) sin 4 α α 0 α 0 + Δ ϕ ]
I 1 = A [ 1 8 ( 1 + 20 γ + 40 γ 2 ) + 1 2 ( 1 + 6 γ + 8 γ 2 ) cos 2 α + 1 8 ( 1 + 4 γ ) cos 4 α ]
I 2 = A [ 1 8 ( 1 + 20 γ + 40 γ 2 ) + 1 2 ( 1 + 6 γ + 8 γ 2 ) cos 2 ( α + π 3 ) + 1 8 ( 1 + 4 γ ) cos 4 ( α + π 3 ) ]
I 3 = A [ 1 8 ( 1 + 20 γ + 40 γ 2 ) + 1 2 ( 1 + 6 γ + 8 γ 2 ) cos 2 ( α + 2 π 3 ) + 1 8 ( 1 + 4 γ ) cos 4 ( α + 2 π 3 ) ]
I total = I 1 + I 2 + I 3
= A { 3 8 ( 1 + 20 γ + 40 γ 2 ) + 1 2 ( 1 + 6 γ + 8 γ 2 ) [ cos 2 α + cos ( 2 α + 2 π 3 ) + cos ( 2 α + 4 π 3 ) ]
+ 1 8 ( 1 + 4 γ ) [ cos 4 α + cos ( 4 α + 4 π 3 ) + cos ( 4 α + 8 π 3 ) ] }
= 3 A 8 ( 1 + 20 γ + 40 γ 2 )

Metrics