Abstract

Simultaneous oscillations of 1318.8nm, 1320.0nm, 1332.6nm, 1335.0nm, 1338.2nm and 1339.0nm in a side, pulsed-diode-laser-array pumped Nd:YAG laser is realized for both free running and Q-switched operation. An average power of 1.1W is obtained for an absorbed pump power of 7.1W with an effective optical slope efficiency of 33%. The difference frequency interactions among these wavelengths may be used to generate radiation in the range 0.13–3.43THz. With the two most intense lines at 1318.8nm and 1338.2nm, it is possible to generate coherent radiation at 3.3THz with numerically estimated peak power of 0.21W in a 1.5mm thick GaSe crystal.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson and X. C. Zhang, "Materials for terahertz science and technology," Nature Materials 1, 26-33 (2002).
    [CrossRef]
  2. M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, "Label-free probing of the binding state of DNA by time-domain terahertz sensing," Appl. Phys. Lett. 77, 4049-4051, (2000).
    [CrossRef]
  3. M. A. Frerking, "Submillimeter source needs for NASA mission," Proc. SPIE 2145, 222-229 (1994).
    [CrossRef]
  4. B. D. Guenther, "Terahertz sources," Proc. SPIE 2145, 120-129 (1994).
    [CrossRef]
  5. W. Shei and Y. J. Ding, "Continuously tunable and coherent terahertz radiation by means of phase-matched difference frequency generation in zinc germanium phosphide," Appl. Phys. Lett. 83, 848-850 (2003).
    [CrossRef]
  6. T. Taniuchi, S. Okada, and H. Nakanishi, "Widely-tunable THz-wave generation in 2-20THz range from DAST crystal by nonlinear difference frequency mixing," Electron. Lett. 40, 60-61 (2004).
    [CrossRef]
  7. H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z.D. Zeng, W. J. Zhang, and Q. J. Ye, "Simultaneous multiple wavelength laser action in various Neodymium host crystals," IEEE J. Quantum. Electron. 27, 2315-2318 (1991).
    [CrossRef]
  8. W. Koechner, "Solid-State Laser Engineering," Springer, 5th Ed., pp. 46-56, 1999.
  9. R. W. Farley and P. D. Dao, "Development of an intracavity-summed multiple-wavelength Nd:YAG laser for a rugged, solid-state sodium lidar system, " Appl. Opt. 34, 4269-4273, (1995).
    [CrossRef] [PubMed]
  10. R. Zhou, W. Wen, Z. Cai, X. Ding, P. Wang, and J. Yao, "Efficient stable simultaneous CW dual wavelength diode-end-pumped Nd:YAG laser operating at 1.319 and 1.338 μm," Chinese Opt. Lett. 3, 597-599, (2005).
  11. H. Y. Shen,W. X. Lin, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, R. F. Wu, and Q. J. Ye, "1079.5- and 1341.4-nm: larger energy from a dual-wavelength Nd:YAlO3 pulsed laser," Appl. Opt. 32, 5952-5975, (1993).
    [CrossRef] [PubMed]
  12. Y. Lu, B. Zhang, E. Li, D. Xu, R. Zhou, X. Zhao, F. Ji, T. Zhang, P. Wang, and J. Yao, "High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition," Opt. Commun. (2006) (in press).
    [CrossRef]
  13. P. X. Li, D. H. Li, C. Y. Li, and Z. G. Zhang, "Simultaneous dual-wavelength continuous wave laser operation at 1.06 μm and 946 nm in Nd:YAG and their frequency doubling," Opt. Commun. 235, 169-174, (2004).
    [CrossRef]
  14. J. Marling, "1.05-1.44 μm Tunability and Performance of the CW Nd3+ :YAG Laser," IEEE J. Quantum. Electron. 14, 56-62, (1978).
    [CrossRef]
  15. W. Shi, Y.J. Ding, N. Fernelius, and K. Vodopyanov, "Efficient, tunable, and coherent 0.18- 5.27-THz source based on GaSe crystal," Opt. Lett. 27, 1454-1456, (2002).
    [CrossRef]
  16. R. L. Sutherland, "Handbook of nonlinear optics," Marcel Dekker Inc, 87, (1996).

2006 (1)

Y. Lu, B. Zhang, E. Li, D. Xu, R. Zhou, X. Zhao, F. Ji, T. Zhang, P. Wang, and J. Yao, "High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition," Opt. Commun. (2006) (in press).
[CrossRef]

2005 (1)

R. Zhou, W. Wen, Z. Cai, X. Ding, P. Wang, and J. Yao, "Efficient stable simultaneous CW dual wavelength diode-end-pumped Nd:YAG laser operating at 1.319 and 1.338 μm," Chinese Opt. Lett. 3, 597-599, (2005).

2004 (2)

P. X. Li, D. H. Li, C. Y. Li, and Z. G. Zhang, "Simultaneous dual-wavelength continuous wave laser operation at 1.06 μm and 946 nm in Nd:YAG and their frequency doubling," Opt. Commun. 235, 169-174, (2004).
[CrossRef]

T. Taniuchi, S. Okada, and H. Nakanishi, "Widely-tunable THz-wave generation in 2-20THz range from DAST crystal by nonlinear difference frequency mixing," Electron. Lett. 40, 60-61 (2004).
[CrossRef]

2003 (1)

W. Shei and Y. J. Ding, "Continuously tunable and coherent terahertz radiation by means of phase-matched difference frequency generation in zinc germanium phosphide," Appl. Phys. Lett. 83, 848-850 (2003).
[CrossRef]

2002 (2)

2000 (1)

M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, "Label-free probing of the binding state of DNA by time-domain terahertz sensing," Appl. Phys. Lett. 77, 4049-4051, (2000).
[CrossRef]

1995 (1)

1994 (2)

M. A. Frerking, "Submillimeter source needs for NASA mission," Proc. SPIE 2145, 222-229 (1994).
[CrossRef]

B. D. Guenther, "Terahertz sources," Proc. SPIE 2145, 120-129 (1994).
[CrossRef]

1993 (1)

1991 (1)

H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z.D. Zeng, W. J. Zhang, and Q. J. Ye, "Simultaneous multiple wavelength laser action in various Neodymium host crystals," IEEE J. Quantum. Electron. 27, 2315-2318 (1991).
[CrossRef]

1978 (1)

J. Marling, "1.05-1.44 μm Tunability and Performance of the CW Nd3+ :YAG Laser," IEEE J. Quantum. Electron. 14, 56-62, (1978).
[CrossRef]

Bosserhoff, A.

M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, "Label-free probing of the binding state of DNA by time-domain terahertz sensing," Appl. Phys. Lett. 77, 4049-4051, (2000).
[CrossRef]

Brucherseifer, M.

M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, "Label-free probing of the binding state of DNA by time-domain terahertz sensing," Appl. Phys. Lett. 77, 4049-4051, (2000).
[CrossRef]

Buttner, R.

M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, "Label-free probing of the binding state of DNA by time-domain terahertz sensing," Appl. Phys. Lett. 77, 4049-4051, (2000).
[CrossRef]

Cai, Z.

R. Zhou, W. Wen, Z. Cai, X. Ding, P. Wang, and J. Yao, "Efficient stable simultaneous CW dual wavelength diode-end-pumped Nd:YAG laser operating at 1.319 and 1.338 μm," Chinese Opt. Lett. 3, 597-599, (2005).

Dao, P. D.

Ding, X.

R. Zhou, W. Wen, Z. Cai, X. Ding, P. Wang, and J. Yao, "Efficient stable simultaneous CW dual wavelength diode-end-pumped Nd:YAG laser operating at 1.319 and 1.338 μm," Chinese Opt. Lett. 3, 597-599, (2005).

Ding, Y. J.

W. Shei and Y. J. Ding, "Continuously tunable and coherent terahertz radiation by means of phase-matched difference frequency generation in zinc germanium phosphide," Appl. Phys. Lett. 83, 848-850 (2003).
[CrossRef]

Ding, Y.J.

Farley, R. W.

Ferguson, B.

B. Ferguson and X. C. Zhang, "Materials for terahertz science and technology," Nature Materials 1, 26-33 (2002).
[CrossRef]

Fernelius, N.

Frerking, M. A.

M. A. Frerking, "Submillimeter source needs for NASA mission," Proc. SPIE 2145, 222-229 (1994).
[CrossRef]

Guenther, B. D.

B. D. Guenther, "Terahertz sources," Proc. SPIE 2145, 120-129 (1994).
[CrossRef]

Haring Bolivar, P.

M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, "Label-free probing of the binding state of DNA by time-domain terahertz sensing," Appl. Phys. Lett. 77, 4049-4051, (2000).
[CrossRef]

Huang, C. H.

H. Y. Shen,W. X. Lin, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, R. F. Wu, and Q. J. Ye, "1079.5- and 1341.4-nm: larger energy from a dual-wavelength Nd:YAlO3 pulsed laser," Appl. Opt. 32, 5952-5975, (1993).
[CrossRef] [PubMed]

H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z.D. Zeng, W. J. Zhang, and Q. J. Ye, "Simultaneous multiple wavelength laser action in various Neodymium host crystals," IEEE J. Quantum. Electron. 27, 2315-2318 (1991).
[CrossRef]

Ji, F.

Y. Lu, B. Zhang, E. Li, D. Xu, R. Zhou, X. Zhao, F. Ji, T. Zhang, P. Wang, and J. Yao, "High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition," Opt. Commun. (2006) (in press).
[CrossRef]

Kurz, H.

M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, "Label-free probing of the binding state of DNA by time-domain terahertz sensing," Appl. Phys. Lett. 77, 4049-4051, (2000).
[CrossRef]

Li, C. Y.

P. X. Li, D. H. Li, C. Y. Li, and Z. G. Zhang, "Simultaneous dual-wavelength continuous wave laser operation at 1.06 μm and 946 nm in Nd:YAG and their frequency doubling," Opt. Commun. 235, 169-174, (2004).
[CrossRef]

Li, D. H.

P. X. Li, D. H. Li, C. Y. Li, and Z. G. Zhang, "Simultaneous dual-wavelength continuous wave laser operation at 1.06 μm and 946 nm in Nd:YAG and their frequency doubling," Opt. Commun. 235, 169-174, (2004).
[CrossRef]

Li, E.

Y. Lu, B. Zhang, E. Li, D. Xu, R. Zhou, X. Zhao, F. Ji, T. Zhang, P. Wang, and J. Yao, "High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition," Opt. Commun. (2006) (in press).
[CrossRef]

Li, P. X.

P. X. Li, D. H. Li, C. Y. Li, and Z. G. Zhang, "Simultaneous dual-wavelength continuous wave laser operation at 1.06 μm and 946 nm in Nd:YAG and their frequency doubling," Opt. Commun. 235, 169-174, (2004).
[CrossRef]

Lin, W. X.

Lu, Y.

Y. Lu, B. Zhang, E. Li, D. Xu, R. Zhou, X. Zhao, F. Ji, T. Zhang, P. Wang, and J. Yao, "High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition," Opt. Commun. (2006) (in press).
[CrossRef]

Marling, J.

J. Marling, "1.05-1.44 μm Tunability and Performance of the CW Nd3+ :YAG Laser," IEEE J. Quantum. Electron. 14, 56-62, (1978).
[CrossRef]

Nagel, M.

M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, "Label-free probing of the binding state of DNA by time-domain terahertz sensing," Appl. Phys. Lett. 77, 4049-4051, (2000).
[CrossRef]

Nakanishi, H.

T. Taniuchi, S. Okada, and H. Nakanishi, "Widely-tunable THz-wave generation in 2-20THz range from DAST crystal by nonlinear difference frequency mixing," Electron. Lett. 40, 60-61 (2004).
[CrossRef]

Okada, S.

T. Taniuchi, S. Okada, and H. Nakanishi, "Widely-tunable THz-wave generation in 2-20THz range from DAST crystal by nonlinear difference frequency mixing," Electron. Lett. 40, 60-61 (2004).
[CrossRef]

Shei, W.

W. Shei and Y. J. Ding, "Continuously tunable and coherent terahertz radiation by means of phase-matched difference frequency generation in zinc germanium phosphide," Appl. Phys. Lett. 83, 848-850 (2003).
[CrossRef]

Shen, H. Y.

H. Y. Shen,W. X. Lin, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, R. F. Wu, and Q. J. Ye, "1079.5- and 1341.4-nm: larger energy from a dual-wavelength Nd:YAlO3 pulsed laser," Appl. Opt. 32, 5952-5975, (1993).
[CrossRef] [PubMed]

H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z.D. Zeng, W. J. Zhang, and Q. J. Ye, "Simultaneous multiple wavelength laser action in various Neodymium host crystals," IEEE J. Quantum. Electron. 27, 2315-2318 (1991).
[CrossRef]

Shi, W.

Taniuchi, T.

T. Taniuchi, S. Okada, and H. Nakanishi, "Widely-tunable THz-wave generation in 2-20THz range from DAST crystal by nonlinear difference frequency mixing," Electron. Lett. 40, 60-61 (2004).
[CrossRef]

Vodopyanov, K.

Wang, P.

Y. Lu, B. Zhang, E. Li, D. Xu, R. Zhou, X. Zhao, F. Ji, T. Zhang, P. Wang, and J. Yao, "High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition," Opt. Commun. (2006) (in press).
[CrossRef]

R. Zhou, W. Wen, Z. Cai, X. Ding, P. Wang, and J. Yao, "Efficient stable simultaneous CW dual wavelength diode-end-pumped Nd:YAG laser operating at 1.319 and 1.338 μm," Chinese Opt. Lett. 3, 597-599, (2005).

Wen, W.

R. Zhou, W. Wen, Z. Cai, X. Ding, P. Wang, and J. Yao, "Efficient stable simultaneous CW dual wavelength diode-end-pumped Nd:YAG laser operating at 1.319 and 1.338 μm," Chinese Opt. Lett. 3, 597-599, (2005).

Wu, R. F.

Xu, D.

Y. Lu, B. Zhang, E. Li, D. Xu, R. Zhou, X. Zhao, F. Ji, T. Zhang, P. Wang, and J. Yao, "High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition," Opt. Commun. (2006) (in press).
[CrossRef]

Yao, J.

Y. Lu, B. Zhang, E. Li, D. Xu, R. Zhou, X. Zhao, F. Ji, T. Zhang, P. Wang, and J. Yao, "High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition," Opt. Commun. (2006) (in press).
[CrossRef]

R. Zhou, W. Wen, Z. Cai, X. Ding, P. Wang, and J. Yao, "Efficient stable simultaneous CW dual wavelength diode-end-pumped Nd:YAG laser operating at 1.319 and 1.338 μm," Chinese Opt. Lett. 3, 597-599, (2005).

Ye, Q. J.

H. Y. Shen,W. X. Lin, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, R. F. Wu, and Q. J. Ye, "1079.5- and 1341.4-nm: larger energy from a dual-wavelength Nd:YAlO3 pulsed laser," Appl. Opt. 32, 5952-5975, (1993).
[CrossRef] [PubMed]

H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z.D. Zeng, W. J. Zhang, and Q. J. Ye, "Simultaneous multiple wavelength laser action in various Neodymium host crystals," IEEE J. Quantum. Electron. 27, 2315-2318 (1991).
[CrossRef]

Yu, G. F.

H. Y. Shen,W. X. Lin, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, R. F. Wu, and Q. J. Ye, "1079.5- and 1341.4-nm: larger energy from a dual-wavelength Nd:YAlO3 pulsed laser," Appl. Opt. 32, 5952-5975, (1993).
[CrossRef] [PubMed]

H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z.D. Zeng, W. J. Zhang, and Q. J. Ye, "Simultaneous multiple wavelength laser action in various Neodymium host crystals," IEEE J. Quantum. Electron. 27, 2315-2318 (1991).
[CrossRef]

Zeng, R. R.

H. Y. Shen,W. X. Lin, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, R. F. Wu, and Q. J. Ye, "1079.5- and 1341.4-nm: larger energy from a dual-wavelength Nd:YAlO3 pulsed laser," Appl. Opt. 32, 5952-5975, (1993).
[CrossRef] [PubMed]

H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z.D. Zeng, W. J. Zhang, and Q. J. Ye, "Simultaneous multiple wavelength laser action in various Neodymium host crystals," IEEE J. Quantum. Electron. 27, 2315-2318 (1991).
[CrossRef]

Zeng, Z. D.

Zeng, Z.D.

H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z.D. Zeng, W. J. Zhang, and Q. J. Ye, "Simultaneous multiple wavelength laser action in various Neodymium host crystals," IEEE J. Quantum. Electron. 27, 2315-2318 (1991).
[CrossRef]

Zhang, B.

Y. Lu, B. Zhang, E. Li, D. Xu, R. Zhou, X. Zhao, F. Ji, T. Zhang, P. Wang, and J. Yao, "High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition," Opt. Commun. (2006) (in press).
[CrossRef]

Zhang, T.

Y. Lu, B. Zhang, E. Li, D. Xu, R. Zhou, X. Zhao, F. Ji, T. Zhang, P. Wang, and J. Yao, "High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition," Opt. Commun. (2006) (in press).
[CrossRef]

Zhang, W. J.

H. Y. Shen,W. X. Lin, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, R. F. Wu, and Q. J. Ye, "1079.5- and 1341.4-nm: larger energy from a dual-wavelength Nd:YAlO3 pulsed laser," Appl. Opt. 32, 5952-5975, (1993).
[CrossRef] [PubMed]

H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z.D. Zeng, W. J. Zhang, and Q. J. Ye, "Simultaneous multiple wavelength laser action in various Neodymium host crystals," IEEE J. Quantum. Electron. 27, 2315-2318 (1991).
[CrossRef]

Zhang, X. C.

B. Ferguson and X. C. Zhang, "Materials for terahertz science and technology," Nature Materials 1, 26-33 (2002).
[CrossRef]

Zhang, Z. G.

P. X. Li, D. H. Li, C. Y. Li, and Z. G. Zhang, "Simultaneous dual-wavelength continuous wave laser operation at 1.06 μm and 946 nm in Nd:YAG and their frequency doubling," Opt. Commun. 235, 169-174, (2004).
[CrossRef]

Zhao, X.

Y. Lu, B. Zhang, E. Li, D. Xu, R. Zhou, X. Zhao, F. Ji, T. Zhang, P. Wang, and J. Yao, "High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition," Opt. Commun. (2006) (in press).
[CrossRef]

Zhou, R.

Y. Lu, B. Zhang, E. Li, D. Xu, R. Zhou, X. Zhao, F. Ji, T. Zhang, P. Wang, and J. Yao, "High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition," Opt. Commun. (2006) (in press).
[CrossRef]

R. Zhou, W. Wen, Z. Cai, X. Ding, P. Wang, and J. Yao, "Efficient stable simultaneous CW dual wavelength diode-end-pumped Nd:YAG laser operating at 1.319 and 1.338 μm," Chinese Opt. Lett. 3, 597-599, (2005).

Zhou, Y. P.

H. Y. Shen,W. X. Lin, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, R. F. Wu, and Q. J. Ye, "1079.5- and 1341.4-nm: larger energy from a dual-wavelength Nd:YAlO3 pulsed laser," Appl. Opt. 32, 5952-5975, (1993).
[CrossRef] [PubMed]

H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z.D. Zeng, W. J. Zhang, and Q. J. Ye, "Simultaneous multiple wavelength laser action in various Neodymium host crystals," IEEE J. Quantum. Electron. 27, 2315-2318 (1991).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

W. Shei and Y. J. Ding, "Continuously tunable and coherent terahertz radiation by means of phase-matched difference frequency generation in zinc germanium phosphide," Appl. Phys. Lett. 83, 848-850 (2003).
[CrossRef]

M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, "Label-free probing of the binding state of DNA by time-domain terahertz sensing," Appl. Phys. Lett. 77, 4049-4051, (2000).
[CrossRef]

Chinese Opt. Lett. (1)

R. Zhou, W. Wen, Z. Cai, X. Ding, P. Wang, and J. Yao, "Efficient stable simultaneous CW dual wavelength diode-end-pumped Nd:YAG laser operating at 1.319 and 1.338 μm," Chinese Opt. Lett. 3, 597-599, (2005).

Electron. Lett. (1)

T. Taniuchi, S. Okada, and H. Nakanishi, "Widely-tunable THz-wave generation in 2-20THz range from DAST crystal by nonlinear difference frequency mixing," Electron. Lett. 40, 60-61 (2004).
[CrossRef]

IEEE J. Quantum. Electron. (2)

H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z.D. Zeng, W. J. Zhang, and Q. J. Ye, "Simultaneous multiple wavelength laser action in various Neodymium host crystals," IEEE J. Quantum. Electron. 27, 2315-2318 (1991).
[CrossRef]

J. Marling, "1.05-1.44 μm Tunability and Performance of the CW Nd3+ :YAG Laser," IEEE J. Quantum. Electron. 14, 56-62, (1978).
[CrossRef]

Nature Materials (1)

B. Ferguson and X. C. Zhang, "Materials for terahertz science and technology," Nature Materials 1, 26-33 (2002).
[CrossRef]

Opt. Commun. (2)

Y. Lu, B. Zhang, E. Li, D. Xu, R. Zhou, X. Zhao, F. Ji, T. Zhang, P. Wang, and J. Yao, "High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition," Opt. Commun. (2006) (in press).
[CrossRef]

P. X. Li, D. H. Li, C. Y. Li, and Z. G. Zhang, "Simultaneous dual-wavelength continuous wave laser operation at 1.06 μm and 946 nm in Nd:YAG and their frequency doubling," Opt. Commun. 235, 169-174, (2004).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (2)

M. A. Frerking, "Submillimeter source needs for NASA mission," Proc. SPIE 2145, 222-229 (1994).
[CrossRef]

B. D. Guenther, "Terahertz sources," Proc. SPIE 2145, 120-129 (1994).
[CrossRef]

Other (2)

W. Koechner, "Solid-State Laser Engineering," Springer, 5th Ed., pp. 46-56, 1999.

R. L. Sutherland, "Handbook of nonlinear optics," Marcel Dekker Inc, 87, (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Stark splitting of 4F3/2 and 4I13/2 of Nd3+ion in YAG host

Fig. 2.
Fig. 2.

Laser layout: LDA, laser diode array; RM, rear mirror; AOQS, acousto-optic Q-switch; OC, Broadband output coupler; L, Nd:YAG rod; BBO, Beta-Barium Borate crystal

Fig. 3.
Fig. 3.

The partial contribution of the lasing lines in the logarithmic scale

Fig. 4.
Fig. 4.

Average output power versus absorbed pump power (by varying diode current) corresponding to the pump pulse repetition rate of 200 Hz. The red line is the best fit for the data

Fig. 5.
Fig. 5.

Average output power versus pump pulse repetition rate/absorbed pump power

Fig. 6.
Fig. 6.

Variation focal length of thermal lens as a function of absorbed pump power. Input pump power is varied by changing the pump repletion rate.

Fig. 7.
Fig. 7.

Transverse beam profile of the SHG and SFG of Nd:YAG laser

Fig. 8.
Fig. 8.

Q-switch pulse trace for modulation frequency of 10kHz

Metrics