Abstract

A simple heat imprinting method for producing stable longperiod gratings (LPGs) in microstructured polymer optical fibre (mPOF) is presented as well as the examination of their lifetime and the modelling results of these gratings. Writing LPGs in mPOF presents opportunities for sensors in fibre that can withstand greater bending and strain and are adaptable to specific applications through modification of the cladding structure.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. M. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke and N. A. P. Nicorovici, "Micostructured polymer optical fibre," Opt. Express 9,319-327 (2001.
    [CrossRef] [PubMed]
  2. P. St. J. Russell, "Photonic crystal fibers," Science 299,358-362 (2003).
    [CrossRef] [PubMed]
  3. M. A. van Eijkelenborg, W. Padden, J. A. Besley, "Mechanically induced long-period gratings in microstructured polymer fibre," Opt. Commun. 236,75-78 (2004).
    [CrossRef]
  4. V. Bhatia, "Applications of long-period gratings to single and multi-parameter sensing," Opt. Express 4,457-466 (1999).
    [CrossRef] [PubMed]
  5. Z. Li, H. Y. Tam, L. Xu and Q. Zhang, "Fabrication of long-period gratings in poly(methyl methacrylate-co-methyl vinyl ketone-co-benzyl methacrylate)-core polymer optical fiber by use of a mercury lamp," Opt. Lett. 30,1117-1119 (2005).
    [CrossRef] [PubMed]
  6. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler and G. L. Burdge, "Cladding-mode-resonances in air-silica microstructure optical fibers," J. Lightwave Technol. 18,1084-1100 (2000).
    [CrossRef]
  7. Y. Zhu, P. Shum, H-J. Chong, M. K. Rao and C. Lu, "Strong resonance and highly compact long-period grating in a large-mode-area photonic crystal fiber," Opt. Express 11,1900-1905 (2003).
    [CrossRef] [PubMed]
  8. G. Kakarantzas, T. A. Birks and P. St. J. Russell, "Structural long-period gratings in photonic crystal fibers," Opt. Lett. 27,1013-1015 (2002).
    [CrossRef]
  9. K. Morishita and Y. Miyake, "Fabrication and resonance wavelengths of long-period gratings written in a pure-silica photonic crystal fiber by the glass structure change," J. Lightwave Technol. 22,625-630 (2004).
    [CrossRef]
  10. G. Humbert, A. Malki, S. Fevrier, P. Roy and D. Pagnoux, "Characterizations at high temperatures of long-period gratings written in germanium-free air-silica microstructure fiber," Opt. Lett. 29,38-40 (2004).
    [CrossRef] [PubMed]
  11. H. Dobb, K. Kalli and D. J. Webb, "Measured sensitivity of arc-induced long-period grating sensors in photonic crystal fibre," Opt. Commun. 260,184-191 (2006).
    [CrossRef]
  12. A. Dioz, A. Birks, W. H. Reeves, B. J. Mangan and P. St. J. Russell, "Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves," Opt. Lett. 25,1499-1501 (2000).
    [CrossRef]
  13. J. H. Lim, K. S. Lee, J. C. Kim and B. H. Lee, "Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure," Opt. Lett. 29,331-333 (2004).
    [CrossRef] [PubMed]
  14. H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large and M. A. van Eijkelenborg, "Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers," Opt. Lett. 30,3296-3298 (2005).
    [CrossRef]
  15. N. A. Issa and L. Poladian, "Vector wave expansion method for leaky modes of microstructured optical fibers," J. Lightwave Technol. 21,1005-1012 (2003).
    [CrossRef]
  16. P. Steinvurzel, E. D. Moore, E. C. Mägi, B. T. Kuhlmey and B. J. Eggleton, "Long period grating resonances in photonic bandgap fibre," Opt. Express 14,3007-3014 (2006).
    [CrossRef] [PubMed]

2006 (2)

H. Dobb, K. Kalli and D. J. Webb, "Measured sensitivity of arc-induced long-period grating sensors in photonic crystal fibre," Opt. Commun. 260,184-191 (2006).
[CrossRef]

P. Steinvurzel, E. D. Moore, E. C. Mägi, B. T. Kuhlmey and B. J. Eggleton, "Long period grating resonances in photonic bandgap fibre," Opt. Express 14,3007-3014 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (4)

2003 (3)

2002 (1)

2001 (1)

2000 (2)

1999 (1)

Argyros, A.

Bassett, I. M.

Besley, J. A.

M. A. van Eijkelenborg, W. Padden, J. A. Besley, "Mechanically induced long-period gratings in microstructured polymer fibre," Opt. Commun. 236,75-78 (2004).
[CrossRef]

Bhatia, V.

Birks, A.

Birks, T. A.

Burdge, G. L.

Chong, H-J.

de Sterke, C. M.

Dioz, A.

Dobb, H.

Eggleton, B. J.

Fevrier, S.

Fleming, S.

Humbert, G.

Issa, N. A.

Kakarantzas, G.

Kalli, K.

Kerbage, C.

Kim, J. C.

Kuhlmey, B. T.

Large, M. C. J.

Lee, B. H.

Lee, K. S.

Li, Z.

Lim, J. H.

Lu, C.

Mägi, E. C.

Malki, A.

Mangan, B. J.

Manos, S.

McPhedran, R. C.

Miyake, Y.

Moore, E. D.

Morishita, K.

Nicorovici, N. A. P.

Padden, W.

M. A. van Eijkelenborg, W. Padden, J. A. Besley, "Mechanically induced long-period gratings in microstructured polymer fibre," Opt. Commun. 236,75-78 (2004).
[CrossRef]

Pagnoux, D.

Poladian, L.

Rao, M. K.

Reeves, W. H.

Roy, P.

Russell, P. St. J.

Shum, P.

Steinvurzel, P.

Tam, H. Y.

van Eijkelenborg, M. A.

Webb, D. J.

Westbrook, P. S.

White, C. A.

Windeler, R. S.

Xu, L.

Zagari, J.

Zhang, Q.

Zhu, Y.

J. Lightwave Technol. (3)

Opt. Commun. (2)

M. A. van Eijkelenborg, W. Padden, J. A. Besley, "Mechanically induced long-period gratings in microstructured polymer fibre," Opt. Commun. 236,75-78 (2004).
[CrossRef]

H. Dobb, K. Kalli and D. J. Webb, "Measured sensitivity of arc-induced long-period grating sensors in photonic crystal fibre," Opt. Commun. 260,184-191 (2006).
[CrossRef]

Opt. Express (4)

Opt. Lett. (6)

Science (1)

P. St. J. Russell, "Photonic crystal fibers," Science 299,358-362 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Cross section of fibre inscribed with LPGs. The fibre has a grating pitch of 2.62 µm, an average hole diameter of 1.09 µm and an outer diameter of 310 µm.

Fig. 2.
Fig. 2.

Transmission spectrum of LPG inscribed by heat imprinting with template of period 1mm.

Fig. 3.
Fig. 3.

Transmission spectrum of LPG inscribed by heat imprinting with template of period 0.5 mm. This spectrum displays wider features attributed to the grating template being shallower.

Fig. 4.
Fig. 4.

Grating strength versus time stored at 60°C. One written with low weight and high temperature (LWHT) the other with high weight and low temperature (HWLT).

Fig. 5.
Fig. 5.

Calculated resonances for varying grating period based upon a 4 ring ideal fibre structure with hole radius=0.543 µm and separation=2.62 µm. Shown are the solutions of Eq. (1) using the neff of the first three cladding modes for each value of m from 1–7. The solid red lines represent coupling to the cladding mode with the highest neff, the broken blue lines coupling to the cladding mode with the second highest neff and the dotted green lines coupling to the cladding mode with the third highest neff.

Fig. 6.
Fig. 6.

Calculated resonances for coupling between the core mode and first cladding mode (m=6) using the same parameters as Fig. 5 with the exception of changing hole size. This is indicative of changes experienced by all resonances.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

m λ = Λ LPG ( n n cl ) ,

Metrics