Abstract

We propose and demonstrate a novel Sagnac interferometer based flat-top birefringent optical interleaver employing a ring-cavity as a phase-shift element. The Sagnac interferometer with birefringent crystals provides the optical path difference for interference between the two orthogonal polarization components and the ring-cavity provides the phase shifts needed to achieve a flat-top spectral passband at the output. Fresnel reflections at the prism-air interface of the ring cavity are employed to obtain the desired phase shifts so that highly accurate thin-film coatings are not needed. The Sagnac interferometer based interleaver in a 25-GHz channel spacing (0.2 nm) application exhibits a 0.5-dB passband larger than 0.145 nm, a 25-dB stop band greater than 0.145 nm, and a channel isolation higher than 36 dB over the entire C-band. The superior performance is accompanied with a group velocity dispersion and ripples that can be compensated by using dispersion compensators.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. V. Kartalopoulos, Introduction to DWDM Technology: Data in a Rainbow, (IEEE Press, New York, 2000), Chap. 1.
  2. S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K.-Y. Wu, and P. Xie, "Interleaver technology: comparisons and applications requirements," J. Lightwave Technol.,  22, 281-289 (2004).
    [CrossRef]
  3. C. Roeloffzen, R. M. Ridder, G. Sengo, K. Worhoff, and A. Driessen, "Passband flattening and rejection band broadening of a periodic Mach-Zehnder wavelength filter by adding a tuned ring resonator," presented at the ECOC’02, Copenhagen, Denmark, Sept. 8-12, 2002, Paper P1.20.
  4. B. B. Dingel and M. Izutsu, "Multifunction optical filter with a Michelson-Gires-Tournois interferometer for wavelength-division-multiplexed network system applications," Opt. Lett. 23, 1099-1101 (1998).
    [CrossRef]
  5. C. H. Hsieh, R. Wang, Z. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, "Flat top interleavers using two Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Letts. 15, 242-244 (2003).
    [CrossRef]
  6. C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh and W. H. Cheng, "Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer," Opt. Commun. 237, 285-293 (2004).
    [CrossRef]
  7. B. B. Dingel and M. Izutsu, "Optical wave-front transformer using the multiple-reflection interference effect inside a resonator," Opt. Lett. 22, 1449-1451 (1997).
    [CrossRef]
  8. S. Cao, C. Lin, C. Yang, E. Ning, J. Zhao, and G. Barbarossa, "Birefringent Gires-Tournois interferometer (BGTI) for DWDM interleaving," presented at the OFC’02, Anaheim, CA, Mar. 17-22, 2002, Paper ThC3.
  9. C. W. Lee, R. Wang, P. Yeh, C. H. Hsieh and W. H. Cheng, "Birefringent interleaver with a ring cavity as a phase-dispersion element," Opt. Lett. 30, 1102-1104 (2005).
    [CrossRef] [PubMed]
  10. X. Ye, M. Zhang, P. Ye, "Flat-top interleavers with chromatic dispersion compensator based on phase dispersive free space Mach-Zehnder interferometer," Opt. Commun. 257, 255-260 (2006).
    [CrossRef]
  11. P. Yeh, Optical Waves in Layered Media, (New York, Wiley, 1988), Chap. 3.
  12. C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Capuzzo, L. T. Gomez, T. N. Nielsen, and I. Brener, "Multistage dispersion compensator using ring resonators," Opt. Lett. 24, 1555-1557 (1999).
    [CrossRef]

2006 (1)

X. Ye, M. Zhang, P. Ye, "Flat-top interleavers with chromatic dispersion compensator based on phase dispersive free space Mach-Zehnder interferometer," Opt. Commun. 257, 255-260 (2006).
[CrossRef]

2005 (1)

2004 (2)

S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K.-Y. Wu, and P. Xie, "Interleaver technology: comparisons and applications requirements," J. Lightwave Technol.,  22, 281-289 (2004).
[CrossRef]

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh and W. H. Cheng, "Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer," Opt. Commun. 237, 285-293 (2004).
[CrossRef]

2003 (1)

C. H. Hsieh, R. Wang, Z. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, "Flat top interleavers using two Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Letts. 15, 242-244 (2003).
[CrossRef]

1999 (1)

1998 (1)

1997 (1)

Brener, I.

Bruce, A. J.

Cao, S.

Capuzzo, M. A.

Chen, J.

Cheng, W. H.

C. W. Lee, R. Wang, P. Yeh, C. H. Hsieh and W. H. Cheng, "Birefringent interleaver with a ring cavity as a phase-dispersion element," Opt. Lett. 30, 1102-1104 (2005).
[CrossRef] [PubMed]

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh and W. H. Cheng, "Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer," Opt. Commun. 237, 285-293 (2004).
[CrossRef]

C. H. Hsieh, R. Wang, Z. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, "Flat top interleavers using two Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Letts. 15, 242-244 (2003).
[CrossRef]

Damask, J. N.

Dingel, B. B.

Doerr, C. R.

Gomez, L. T.

Guiziou, L.

Harvey, G.

Hibino, Y.

Hsieh, C. H.

C. W. Lee, R. Wang, P. Yeh, C. H. Hsieh and W. H. Cheng, "Birefringent interleaver with a ring cavity as a phase-dispersion element," Opt. Lett. 30, 1102-1104 (2005).
[CrossRef] [PubMed]

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh and W. H. Cheng, "Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer," Opt. Commun. 237, 285-293 (2004).
[CrossRef]

C. H. Hsieh, R. Wang, Z. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, "Flat top interleavers using two Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Letts. 15, 242-244 (2003).
[CrossRef]

Huang, S. Y.

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh and W. H. Cheng, "Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer," Opt. Commun. 237, 285-293 (2004).
[CrossRef]

Izutsu, M.

Lee, C. W.

C. W. Lee, R. Wang, P. Yeh, C. H. Hsieh and W. H. Cheng, "Birefringent interleaver with a ring cavity as a phase-dispersion element," Opt. Lett. 30, 1102-1104 (2005).
[CrossRef] [PubMed]

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh and W. H. Cheng, "Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer," Opt. Commun. 237, 285-293 (2004).
[CrossRef]

C. H. Hsieh, R. Wang, Z. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, "Flat top interleavers using two Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Letts. 15, 242-244 (2003).
[CrossRef]

Lenz, G.

Li, H.

Madsen, C. K.

McMichael, I.

C. H. Hsieh, R. Wang, Z. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, "Flat top interleavers using two Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Letts. 15, 242-244 (2003).
[CrossRef]

Nielsen, T. N.

Suzuki, S.

Wang, R.

C. W. Lee, R. Wang, P. Yeh, C. H. Hsieh and W. H. Cheng, "Birefringent interleaver with a ring cavity as a phase-dispersion element," Opt. Lett. 30, 1102-1104 (2005).
[CrossRef] [PubMed]

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh and W. H. Cheng, "Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer," Opt. Commun. 237, 285-293 (2004).
[CrossRef]

C. H. Hsieh, R. Wang, Z. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, "Flat top interleavers using two Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Letts. 15, 242-244 (2003).
[CrossRef]

Wen, Z.

C. H. Hsieh, R. Wang, Z. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, "Flat top interleavers using two Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Letts. 15, 242-244 (2003).
[CrossRef]

Wu, K.-Y.

Xie, P.

Ye, P.

X. Ye, M. Zhang, P. Ye, "Flat-top interleavers with chromatic dispersion compensator based on phase dispersive free space Mach-Zehnder interferometer," Opt. Commun. 257, 255-260 (2006).
[CrossRef]

Ye, X.

X. Ye, M. Zhang, P. Ye, "Flat-top interleavers with chromatic dispersion compensator based on phase dispersive free space Mach-Zehnder interferometer," Opt. Commun. 257, 255-260 (2006).
[CrossRef]

Yeh, P.

C. W. Lee, R. Wang, P. Yeh, C. H. Hsieh and W. H. Cheng, "Birefringent interleaver with a ring cavity as a phase-dispersion element," Opt. Lett. 30, 1102-1104 (2005).
[CrossRef] [PubMed]

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh and W. H. Cheng, "Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer," Opt. Commun. 237, 285-293 (2004).
[CrossRef]

C. H. Hsieh, R. Wang, Z. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, "Flat top interleavers using two Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Letts. 15, 242-244 (2003).
[CrossRef]

Zhang, M.

X. Ye, M. Zhang, P. Ye, "Flat-top interleavers with chromatic dispersion compensator based on phase dispersive free space Mach-Zehnder interferometer," Opt. Commun. 257, 255-260 (2006).
[CrossRef]

IEEE Photon. Technol. Letts. (1)

C. H. Hsieh, R. Wang, Z. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, "Flat top interleavers using two Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Letts. 15, 242-244 (2003).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (2)

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh and W. H. Cheng, "Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer," Opt. Commun. 237, 285-293 (2004).
[CrossRef]

X. Ye, M. Zhang, P. Ye, "Flat-top interleavers with chromatic dispersion compensator based on phase dispersive free space Mach-Zehnder interferometer," Opt. Commun. 257, 255-260 (2006).
[CrossRef]

Opt. Lett. (4)

Other (4)

P. Yeh, Optical Waves in Layered Media, (New York, Wiley, 1988), Chap. 3.

S. Cao, C. Lin, C. Yang, E. Ning, J. Zhao, and G. Barbarossa, "Birefringent Gires-Tournois interferometer (BGTI) for DWDM interleaving," presented at the OFC’02, Anaheim, CA, Mar. 17-22, 2002, Paper ThC3.

S. V. Kartalopoulos, Introduction to DWDM Technology: Data in a Rainbow, (IEEE Press, New York, 2000), Chap. 1.

C. Roeloffzen, R. M. Ridder, G. Sengo, K. Worhoff, and A. Driessen, "Passband flattening and rejection band broadening of a periodic Mach-Zehnder wavelength filter by adding a tuned ring resonator," presented at the ECOC’02, Copenhagen, Denmark, Sept. 8-12, 2002, Paper P1.20.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

A schematic drawing of the new ring-cavity architecture based birefringent interleaver.

Fig. 2.
Fig. 2.

A schematic drawing of the ring cavity.

Fig. 3.
Fig. 3.

The simulation results of a 25-GHz interleaver: (a) the ripple and (b) the 0.5-dB passband, 25-dB stopband, and channel isolation for the incident angle (inside the prism)=31, 31.65, and 32 degrees.

Fig. 4.
Fig. 4.

The simulation results of (a) the group-delay and (b) the chromatic dispersion in a 25-GHz channel spacing.

Fig. 5.
Fig. 5.

Measurement results of the channel isolation, 0.5-dB passband, and 25-dB stopband for (a) the 2 nm band, and (b) the 10 nm band in a 25 GHz channel spacing.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I = 1 2 I 0 { 1 + cos [ 2 π ν c ( n e n o ) ( L 1 + L 2 ) + ( ϕ e ϕ o ) ] }
ϕ e ϕ o = 2 tan 1 ( 1 + R e 1 R e tan ϕ 2 ) 2 tan 1 ( 1 + R O 1 R O tan ϕ 2 )
Δ ν = c ( n e n o ) ( L 1 + L 2 )
L R = ( n e n o ) ( L 1 + L 2 )
R o = n 1 cos θ 1 n 2 cos θ 2 n 1 cos θ 1 + n 2 cos θ 2 2
R e = n 2 cos θ 1 n 1 cos θ 2 n 2 cos θ 1 + n 1 cos θ 2 2
τ ( ω ) = T 2 ( 1 R e 1 + R e 2 R e cos ( 2 π λ L R ) + 1 R o 1 + R o 2 R o cos ( 2 π λ L R ) )
D ( λ ) = T 2 π L R sin ( 2 π λ L R ) λ 2 { R e ( 1 R e ) [ 1 + R e 2 R e cos ( 2 π λ L R ) ] 2 + R o ( 1 R o ) [ 1 + R o 2 R o cos ( 2 π λ L R ) ] 2 }

Metrics