Abstract

Thin films of highly oriented pyrolytic graphite (HOPG) give the opportunity to realize crystal optics with arbitrary geometry by mounting it on a mould of any shape. A specific feature of HOPG is its mosaicity accompanied by a high integral reflectivity, which is by an order of magnitude higher than that of all other known crystals in an energy range between 2 keV up to several 10 keV. These characteristics make it possible to realize highly efficient collecting optics, which could be also relevant for compact x-ray diagnostic tools and spectrometers. For these applications the achievable spectral resolution of the crystal optics is of interest. In this article measurements with a spectral resolution of E/ΔE=2900 in the second order reflection and E/ΔE=1800 in the first order reflection obtained with HOPG crystals are presented. These are by far the highest spectral resolutions reported for HOPG crystals. The integral reflectivity of these very thin films is still comparable with that of ideal Ge crystals. The trade-off between energy resolution and high integral reflectivity for HOPG is demonstrated by determining these parameters for HOPG films of different thickness.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K. Freund, A. Munkholm, and S. Brennan, "X-ray diffraction properties of highly oriented pyrolytic graphite," in Optics for High-Brightness Synchrotron Radiation Beamlines II; L. E. Berman, J. A.; eds.Proc. SPIE 2856,68-79 (1996).
    [CrossRef]
  2. M. Sanchez del Rio, M. Gambaccini, G. Pareschi, A. Taibi, A. Tuffanelli, and A. Freund, "Focusing properties of mosaic crystals," Crystal and Multilayer Optics; A. T. Macrander, A. K. Freund, T. Ishikawa, and D. M. Mills; eds. in Proc.SPIE 3448,246 (1998).
    [CrossRef]
  3. C. Bressler, M. Saes, M. Cherugi, D. Grolimund, R. Abela, and P. Pattisson, "Towards structural dynamics in condensed systems exploiting ultrafast time-resolved x-ray absorption spectroscopy," J. Chem. Phys. 116,2955 (2002).
    [CrossRef]
  4. F. Raksi, K. R. Wilson, Z. Jiang, A. Ikhlef, C. Y. Cote, and J.-C. Kieffer, "Ultrafast X-ray absorption probing of a chemical reaction," J. Chem. Phys. 104,6066 (1996).
    [CrossRef]
  5. T. Lee, Y. Jiang, F. Benesch, and C. G. Rose-Petruck, "Ultrafast laboratory-based x-ray sources and their applications in chemical research," in Commercial and Biomedical Applications of Ultrafast Lasers III; J. Neev, A. Ostendorf, C. B. Schaffer; eds.Proc. SPIE 4978,77-91 (2003).
    [CrossRef]
  6. M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, "Coherent atomic motions in a nanostructure studied by femtosecond x-ray diffraction," Science 306,1771 (2004).
    [CrossRef] [PubMed]
  7. C. Bressler and M. Chergui, "Ultrafast x-ray absorption spevctroscopy," Chem. Rev. 104,1781 (2004).
    [CrossRef] [PubMed]
  8. H. Legall, H. Stiel, P. V. Nickles, A. A. Bjeoumikhov, N. Langhoff, M. Haschke, V.A. Arkadiev, and R. Wedell, "Applications of highly oriented Pyrolytic Graphite (HOPG) for x ray diagnostics and spectroscopy," in Laser-Generated, Synchrotron, and Other Laboratory X-Ray and EUV Sources, Optics, and Applications II; G. A. Kyrala, J.-C. J. Gauthier, C. A. MacDonald, A. M. Khounsary; eds.Proc. SPIE 5918,11-21 (2005).
  9. G. E. Ice and C. J. Sparks, "Mosaic crystal x-ray spectrometer to resolve inelastic background from anomalous scattering experiments," Nucl. Instrum. Methods Phys. Res. A 291,110 (1990).
    [CrossRef]
  10. A. Shevelko, A. Antonov, I. Grigorieva, Y. Kasyanov, O. Yakushev, L. V. Knight, and Q. Wang, "X-ray focusing crystal von Hamos spectrometer with a CCD linear array as a detector," in Advances in Laboratory-based X-Ray Sources and Optics; C. A. MacDonald, and A. M. Khounsary; eds.Proc. SPIE 4144, 148-154 (2000).
    [CrossRef]
  11. A. P. Shevelko, Y. S. Kasyanov, O. F. Yakushev, and L. V. Knight, "Compact focusing von Hamos-spectrometer for quantitative x-ray spectroscopy," Rev. Sci. Instrum. 73, 3458 (2002).
    [CrossRef]
  12. A. Pak, G. Gregori, J. Knight, K. Campbell, D. Price, B. Hammel, O. L. Landen, and S. H. Glenzer, "X-ray line measurements with high efficiency Bragg crystals," Rev. Sci. Instrum. 75,3747 (2004).
    [CrossRef]
  13. A. Bjeoumikhov, N. Langhoff, J. Rabe, and R. Wedell, "A modular system consisting of a microfocus x-ray source and different capillary optics for XRF and XRD applications," X-Ray Spectrom. 33,312 (2004).
    [CrossRef]
  14. J. Härtwig, G. Hölzer, J. Wolf, and E. Förster, "Remeasurement of the profile of the characteristic Cu Ka emission line with high precision and accuracy," J. Appl. Cryst. 26,539 (1993).
    [CrossRef]
  15. M. Ohler, M. Sanchez del Rio, A. Tuffanelli, M. Gambaccini, A. Taibi, A. Fantini, and G. Pareschiet, "X-ray topographic determination of the granular structure in a graphite mosaic crystal: a three-dimensional reconstruction," J. Appl. Cryst. 33,1023 (2000).
    [CrossRef]
  16. "Signatures of Target Performance and Mixing in Titanium-Doped Target Implosions on OMEGA," LLE Review 70,82 (1997).
  17. I. Uschmann, U. Nothelle, E. Forster, V. Arkadiev, N. Langhoff, A. Antonov, I. Grigorieva, R. Steinkopf, and A. Gebhardt, "High efficiency, high quality x-ray optic based on ellipsoidally bent highly oriented pyrolytic graphite crystal for ultrafast x-ray diffraction experiments," Appl. Opt. 44,5069 (2005).
    [CrossRef] [PubMed]

2005

H. Legall, H. Stiel, P. V. Nickles, A. A. Bjeoumikhov, N. Langhoff, M. Haschke, V.A. Arkadiev, and R. Wedell, "Applications of highly oriented Pyrolytic Graphite (HOPG) for x ray diagnostics and spectroscopy," in Laser-Generated, Synchrotron, and Other Laboratory X-Ray and EUV Sources, Optics, and Applications II; G. A. Kyrala, J.-C. J. Gauthier, C. A. MacDonald, A. M. Khounsary; eds.Proc. SPIE 5918,11-21 (2005).

I. Uschmann, U. Nothelle, E. Forster, V. Arkadiev, N. Langhoff, A. Antonov, I. Grigorieva, R. Steinkopf, and A. Gebhardt, "High efficiency, high quality x-ray optic based on ellipsoidally bent highly oriented pyrolytic graphite crystal for ultrafast x-ray diffraction experiments," Appl. Opt. 44,5069 (2005).
[CrossRef] [PubMed]

2004

A. Pak, G. Gregori, J. Knight, K. Campbell, D. Price, B. Hammel, O. L. Landen, and S. H. Glenzer, "X-ray line measurements with high efficiency Bragg crystals," Rev. Sci. Instrum. 75,3747 (2004).
[CrossRef]

A. Bjeoumikhov, N. Langhoff, J. Rabe, and R. Wedell, "A modular system consisting of a microfocus x-ray source and different capillary optics for XRF and XRD applications," X-Ray Spectrom. 33,312 (2004).
[CrossRef]

M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, "Coherent atomic motions in a nanostructure studied by femtosecond x-ray diffraction," Science 306,1771 (2004).
[CrossRef] [PubMed]

C. Bressler and M. Chergui, "Ultrafast x-ray absorption spevctroscopy," Chem. Rev. 104,1781 (2004).
[CrossRef] [PubMed]

2003

T. Lee, Y. Jiang, F. Benesch, and C. G. Rose-Petruck, "Ultrafast laboratory-based x-ray sources and their applications in chemical research," in Commercial and Biomedical Applications of Ultrafast Lasers III; J. Neev, A. Ostendorf, C. B. Schaffer; eds.Proc. SPIE 4978,77-91 (2003).
[CrossRef]

2002

A. P. Shevelko, Y. S. Kasyanov, O. F. Yakushev, and L. V. Knight, "Compact focusing von Hamos-spectrometer for quantitative x-ray spectroscopy," Rev. Sci. Instrum. 73, 3458 (2002).
[CrossRef]

C. Bressler, M. Saes, M. Cherugi, D. Grolimund, R. Abela, and P. Pattisson, "Towards structural dynamics in condensed systems exploiting ultrafast time-resolved x-ray absorption spectroscopy," J. Chem. Phys. 116,2955 (2002).
[CrossRef]

2000

M. Ohler, M. Sanchez del Rio, A. Tuffanelli, M. Gambaccini, A. Taibi, A. Fantini, and G. Pareschiet, "X-ray topographic determination of the granular structure in a graphite mosaic crystal: a three-dimensional reconstruction," J. Appl. Cryst. 33,1023 (2000).
[CrossRef]

A. Shevelko, A. Antonov, I. Grigorieva, Y. Kasyanov, O. Yakushev, L. V. Knight, and Q. Wang, "X-ray focusing crystal von Hamos spectrometer with a CCD linear array as a detector," in Advances in Laboratory-based X-Ray Sources and Optics; C. A. MacDonald, and A. M. Khounsary; eds.Proc. SPIE 4144, 148-154 (2000).
[CrossRef]

1998

M. Sanchez del Rio, M. Gambaccini, G. Pareschi, A. Taibi, A. Tuffanelli, and A. Freund, "Focusing properties of mosaic crystals," Crystal and Multilayer Optics; A. T. Macrander, A. K. Freund, T. Ishikawa, and D. M. Mills; eds. in Proc.SPIE 3448,246 (1998).
[CrossRef]

1997

"Signatures of Target Performance and Mixing in Titanium-Doped Target Implosions on OMEGA," LLE Review 70,82 (1997).

1996

A. K. Freund, A. Munkholm, and S. Brennan, "X-ray diffraction properties of highly oriented pyrolytic graphite," in Optics for High-Brightness Synchrotron Radiation Beamlines II; L. E. Berman, J. A.; eds.Proc. SPIE 2856,68-79 (1996).
[CrossRef]

F. Raksi, K. R. Wilson, Z. Jiang, A. Ikhlef, C. Y. Cote, and J.-C. Kieffer, "Ultrafast X-ray absorption probing of a chemical reaction," J. Chem. Phys. 104,6066 (1996).
[CrossRef]

1993

J. Härtwig, G. Hölzer, J. Wolf, and E. Förster, "Remeasurement of the profile of the characteristic Cu Ka emission line with high precision and accuracy," J. Appl. Cryst. 26,539 (1993).
[CrossRef]

1990

G. E. Ice and C. J. Sparks, "Mosaic crystal x-ray spectrometer to resolve inelastic background from anomalous scattering experiments," Nucl. Instrum. Methods Phys. Res. A 291,110 (1990).
[CrossRef]

Abela, R.

C. Bressler, M. Saes, M. Cherugi, D. Grolimund, R. Abela, and P. Pattisson, "Towards structural dynamics in condensed systems exploiting ultrafast time-resolved x-ray absorption spectroscopy," J. Chem. Phys. 116,2955 (2002).
[CrossRef]

Antonov, A.

I. Uschmann, U. Nothelle, E. Forster, V. Arkadiev, N. Langhoff, A. Antonov, I. Grigorieva, R. Steinkopf, and A. Gebhardt, "High efficiency, high quality x-ray optic based on ellipsoidally bent highly oriented pyrolytic graphite crystal for ultrafast x-ray diffraction experiments," Appl. Opt. 44,5069 (2005).
[CrossRef] [PubMed]

A. Shevelko, A. Antonov, I. Grigorieva, Y. Kasyanov, O. Yakushev, L. V. Knight, and Q. Wang, "X-ray focusing crystal von Hamos spectrometer with a CCD linear array as a detector," in Advances in Laboratory-based X-Ray Sources and Optics; C. A. MacDonald, and A. M. Khounsary; eds.Proc. SPIE 4144, 148-154 (2000).
[CrossRef]

Arkadiev, V.

Arkadiev, V.A.

H. Legall, H. Stiel, P. V. Nickles, A. A. Bjeoumikhov, N. Langhoff, M. Haschke, V.A. Arkadiev, and R. Wedell, "Applications of highly oriented Pyrolytic Graphite (HOPG) for x ray diagnostics and spectroscopy," in Laser-Generated, Synchrotron, and Other Laboratory X-Ray and EUV Sources, Optics, and Applications II; G. A. Kyrala, J.-C. J. Gauthier, C. A. MacDonald, A. M. Khounsary; eds.Proc. SPIE 5918,11-21 (2005).

Bargheer, M.

M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, "Coherent atomic motions in a nanostructure studied by femtosecond x-ray diffraction," Science 306,1771 (2004).
[CrossRef] [PubMed]

Benesch, F.

T. Lee, Y. Jiang, F. Benesch, and C. G. Rose-Petruck, "Ultrafast laboratory-based x-ray sources and their applications in chemical research," in Commercial and Biomedical Applications of Ultrafast Lasers III; J. Neev, A. Ostendorf, C. B. Schaffer; eds.Proc. SPIE 4978,77-91 (2003).
[CrossRef]

Bjeoumikhov, A.

A. Bjeoumikhov, N. Langhoff, J. Rabe, and R. Wedell, "A modular system consisting of a microfocus x-ray source and different capillary optics for XRF and XRD applications," X-Ray Spectrom. 33,312 (2004).
[CrossRef]

Bjeoumikhov, A. A.

H. Legall, H. Stiel, P. V. Nickles, A. A. Bjeoumikhov, N. Langhoff, M. Haschke, V.A. Arkadiev, and R. Wedell, "Applications of highly oriented Pyrolytic Graphite (HOPG) for x ray diagnostics and spectroscopy," in Laser-Generated, Synchrotron, and Other Laboratory X-Ray and EUV Sources, Optics, and Applications II; G. A. Kyrala, J.-C. J. Gauthier, C. A. MacDonald, A. M. Khounsary; eds.Proc. SPIE 5918,11-21 (2005).

Brennan, S.

A. K. Freund, A. Munkholm, and S. Brennan, "X-ray diffraction properties of highly oriented pyrolytic graphite," in Optics for High-Brightness Synchrotron Radiation Beamlines II; L. E. Berman, J. A.; eds.Proc. SPIE 2856,68-79 (1996).
[CrossRef]

Bressler, C.

C. Bressler and M. Chergui, "Ultrafast x-ray absorption spevctroscopy," Chem. Rev. 104,1781 (2004).
[CrossRef] [PubMed]

C. Bressler, M. Saes, M. Cherugi, D. Grolimund, R. Abela, and P. Pattisson, "Towards structural dynamics in condensed systems exploiting ultrafast time-resolved x-ray absorption spectroscopy," J. Chem. Phys. 116,2955 (2002).
[CrossRef]

Campbell, K.

A. Pak, G. Gregori, J. Knight, K. Campbell, D. Price, B. Hammel, O. L. Landen, and S. H. Glenzer, "X-ray line measurements with high efficiency Bragg crystals," Rev. Sci. Instrum. 75,3747 (2004).
[CrossRef]

Chergui, M.

C. Bressler and M. Chergui, "Ultrafast x-ray absorption spevctroscopy," Chem. Rev. 104,1781 (2004).
[CrossRef] [PubMed]

Cherugi, M.

C. Bressler, M. Saes, M. Cherugi, D. Grolimund, R. Abela, and P. Pattisson, "Towards structural dynamics in condensed systems exploiting ultrafast time-resolved x-ray absorption spectroscopy," J. Chem. Phys. 116,2955 (2002).
[CrossRef]

Cote, C. Y.

F. Raksi, K. R. Wilson, Z. Jiang, A. Ikhlef, C. Y. Cote, and J.-C. Kieffer, "Ultrafast X-ray absorption probing of a chemical reaction," J. Chem. Phys. 104,6066 (1996).
[CrossRef]

Elsaesser, T.

M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, "Coherent atomic motions in a nanostructure studied by femtosecond x-ray diffraction," Science 306,1771 (2004).
[CrossRef] [PubMed]

Fantini, A.

M. Ohler, M. Sanchez del Rio, A. Tuffanelli, M. Gambaccini, A. Taibi, A. Fantini, and G. Pareschiet, "X-ray topographic determination of the granular structure in a graphite mosaic crystal: a three-dimensional reconstruction," J. Appl. Cryst. 33,1023 (2000).
[CrossRef]

Forster, E.

Förster, E.

J. Härtwig, G. Hölzer, J. Wolf, and E. Förster, "Remeasurement of the profile of the characteristic Cu Ka emission line with high precision and accuracy," J. Appl. Cryst. 26,539 (1993).
[CrossRef]

Freund, A.

M. Sanchez del Rio, M. Gambaccini, G. Pareschi, A. Taibi, A. Tuffanelli, and A. Freund, "Focusing properties of mosaic crystals," Crystal and Multilayer Optics; A. T. Macrander, A. K. Freund, T. Ishikawa, and D. M. Mills; eds. in Proc.SPIE 3448,246 (1998).
[CrossRef]

Freund, A. K.

A. K. Freund, A. Munkholm, and S. Brennan, "X-ray diffraction properties of highly oriented pyrolytic graphite," in Optics for High-Brightness Synchrotron Radiation Beamlines II; L. E. Berman, J. A.; eds.Proc. SPIE 2856,68-79 (1996).
[CrossRef]

Gambaccini, M.

M. Ohler, M. Sanchez del Rio, A. Tuffanelli, M. Gambaccini, A. Taibi, A. Fantini, and G. Pareschiet, "X-ray topographic determination of the granular structure in a graphite mosaic crystal: a three-dimensional reconstruction," J. Appl. Cryst. 33,1023 (2000).
[CrossRef]

M. Sanchez del Rio, M. Gambaccini, G. Pareschi, A. Taibi, A. Tuffanelli, and A. Freund, "Focusing properties of mosaic crystals," Crystal and Multilayer Optics; A. T. Macrander, A. K. Freund, T. Ishikawa, and D. M. Mills; eds. in Proc.SPIE 3448,246 (1998).
[CrossRef]

Gebhardt, A.

Glenzer, S. H.

A. Pak, G. Gregori, J. Knight, K. Campbell, D. Price, B. Hammel, O. L. Landen, and S. H. Glenzer, "X-ray line measurements with high efficiency Bragg crystals," Rev. Sci. Instrum. 75,3747 (2004).
[CrossRef]

Gregori, G.

A. Pak, G. Gregori, J. Knight, K. Campbell, D. Price, B. Hammel, O. L. Landen, and S. H. Glenzer, "X-ray line measurements with high efficiency Bragg crystals," Rev. Sci. Instrum. 75,3747 (2004).
[CrossRef]

Grigorieva, I.

I. Uschmann, U. Nothelle, E. Forster, V. Arkadiev, N. Langhoff, A. Antonov, I. Grigorieva, R. Steinkopf, and A. Gebhardt, "High efficiency, high quality x-ray optic based on ellipsoidally bent highly oriented pyrolytic graphite crystal for ultrafast x-ray diffraction experiments," Appl. Opt. 44,5069 (2005).
[CrossRef] [PubMed]

A. Shevelko, A. Antonov, I. Grigorieva, Y. Kasyanov, O. Yakushev, L. V. Knight, and Q. Wang, "X-ray focusing crystal von Hamos spectrometer with a CCD linear array as a detector," in Advances in Laboratory-based X-Ray Sources and Optics; C. A. MacDonald, and A. M. Khounsary; eds.Proc. SPIE 4144, 148-154 (2000).
[CrossRef]

Gritsai, Y.

M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, "Coherent atomic motions in a nanostructure studied by femtosecond x-ray diffraction," Science 306,1771 (2004).
[CrossRef] [PubMed]

Grolimund, D.

C. Bressler, M. Saes, M. Cherugi, D. Grolimund, R. Abela, and P. Pattisson, "Towards structural dynamics in condensed systems exploiting ultrafast time-resolved x-ray absorption spectroscopy," J. Chem. Phys. 116,2955 (2002).
[CrossRef]

Hammel, B.

A. Pak, G. Gregori, J. Knight, K. Campbell, D. Price, B. Hammel, O. L. Landen, and S. H. Glenzer, "X-ray line measurements with high efficiency Bragg crystals," Rev. Sci. Instrum. 75,3747 (2004).
[CrossRef]

Härtwig, J.

J. Härtwig, G. Hölzer, J. Wolf, and E. Förster, "Remeasurement of the profile of the characteristic Cu Ka emission line with high precision and accuracy," J. Appl. Cryst. 26,539 (1993).
[CrossRef]

Haschke, M.

H. Legall, H. Stiel, P. V. Nickles, A. A. Bjeoumikhov, N. Langhoff, M. Haschke, V.A. Arkadiev, and R. Wedell, "Applications of highly oriented Pyrolytic Graphite (HOPG) for x ray diagnostics and spectroscopy," in Laser-Generated, Synchrotron, and Other Laboratory X-Ray and EUV Sources, Optics, and Applications II; G. A. Kyrala, J.-C. J. Gauthier, C. A. MacDonald, A. M. Khounsary; eds.Proc. SPIE 5918,11-21 (2005).

Hölzer, G.

J. Härtwig, G. Hölzer, J. Wolf, and E. Förster, "Remeasurement of the profile of the characteristic Cu Ka emission line with high precision and accuracy," J. Appl. Cryst. 26,539 (1993).
[CrossRef]

Ice, G. E.

G. E. Ice and C. J. Sparks, "Mosaic crystal x-ray spectrometer to resolve inelastic background from anomalous scattering experiments," Nucl. Instrum. Methods Phys. Res. A 291,110 (1990).
[CrossRef]

Ikhlef, A.

F. Raksi, K. R. Wilson, Z. Jiang, A. Ikhlef, C. Y. Cote, and J.-C. Kieffer, "Ultrafast X-ray absorption probing of a chemical reaction," J. Chem. Phys. 104,6066 (1996).
[CrossRef]

Jiang, Y.

T. Lee, Y. Jiang, F. Benesch, and C. G. Rose-Petruck, "Ultrafast laboratory-based x-ray sources and their applications in chemical research," in Commercial and Biomedical Applications of Ultrafast Lasers III; J. Neev, A. Ostendorf, C. B. Schaffer; eds.Proc. SPIE 4978,77-91 (2003).
[CrossRef]

Jiang, Z.

F. Raksi, K. R. Wilson, Z. Jiang, A. Ikhlef, C. Y. Cote, and J.-C. Kieffer, "Ultrafast X-ray absorption probing of a chemical reaction," J. Chem. Phys. 104,6066 (1996).
[CrossRef]

Kasyanov, Y.

A. Shevelko, A. Antonov, I. Grigorieva, Y. Kasyanov, O. Yakushev, L. V. Knight, and Q. Wang, "X-ray focusing crystal von Hamos spectrometer with a CCD linear array as a detector," in Advances in Laboratory-based X-Ray Sources and Optics; C. A. MacDonald, and A. M. Khounsary; eds.Proc. SPIE 4144, 148-154 (2000).
[CrossRef]

Kasyanov, Y. S.

A. P. Shevelko, Y. S. Kasyanov, O. F. Yakushev, and L. V. Knight, "Compact focusing von Hamos-spectrometer for quantitative x-ray spectroscopy," Rev. Sci. Instrum. 73, 3458 (2002).
[CrossRef]

Kieffer, J.-C.

F. Raksi, K. R. Wilson, Z. Jiang, A. Ikhlef, C. Y. Cote, and J.-C. Kieffer, "Ultrafast X-ray absorption probing of a chemical reaction," J. Chem. Phys. 104,6066 (1996).
[CrossRef]

Kim, D. S.

M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, "Coherent atomic motions in a nanostructure studied by femtosecond x-ray diffraction," Science 306,1771 (2004).
[CrossRef] [PubMed]

Knight, J.

A. Pak, G. Gregori, J. Knight, K. Campbell, D. Price, B. Hammel, O. L. Landen, and S. H. Glenzer, "X-ray line measurements with high efficiency Bragg crystals," Rev. Sci. Instrum. 75,3747 (2004).
[CrossRef]

Knight, L. V.

A. P. Shevelko, Y. S. Kasyanov, O. F. Yakushev, and L. V. Knight, "Compact focusing von Hamos-spectrometer for quantitative x-ray spectroscopy," Rev. Sci. Instrum. 73, 3458 (2002).
[CrossRef]

A. Shevelko, A. Antonov, I. Grigorieva, Y. Kasyanov, O. Yakushev, L. V. Knight, and Q. Wang, "X-ray focusing crystal von Hamos spectrometer with a CCD linear array as a detector," in Advances in Laboratory-based X-Ray Sources and Optics; C. A. MacDonald, and A. M. Khounsary; eds.Proc. SPIE 4144, 148-154 (2000).
[CrossRef]

Landen, O. L.

A. Pak, G. Gregori, J. Knight, K. Campbell, D. Price, B. Hammel, O. L. Landen, and S. H. Glenzer, "X-ray line measurements with high efficiency Bragg crystals," Rev. Sci. Instrum. 75,3747 (2004).
[CrossRef]

Langhoff, N.

H. Legall, H. Stiel, P. V. Nickles, A. A. Bjeoumikhov, N. Langhoff, M. Haschke, V.A. Arkadiev, and R. Wedell, "Applications of highly oriented Pyrolytic Graphite (HOPG) for x ray diagnostics and spectroscopy," in Laser-Generated, Synchrotron, and Other Laboratory X-Ray and EUV Sources, Optics, and Applications II; G. A. Kyrala, J.-C. J. Gauthier, C. A. MacDonald, A. M. Khounsary; eds.Proc. SPIE 5918,11-21 (2005).

I. Uschmann, U. Nothelle, E. Forster, V. Arkadiev, N. Langhoff, A. Antonov, I. Grigorieva, R. Steinkopf, and A. Gebhardt, "High efficiency, high quality x-ray optic based on ellipsoidally bent highly oriented pyrolytic graphite crystal for ultrafast x-ray diffraction experiments," Appl. Opt. 44,5069 (2005).
[CrossRef] [PubMed]

A. Bjeoumikhov, N. Langhoff, J. Rabe, and R. Wedell, "A modular system consisting of a microfocus x-ray source and different capillary optics for XRF and XRD applications," X-Ray Spectrom. 33,312 (2004).
[CrossRef]

Lee, T.

T. Lee, Y. Jiang, F. Benesch, and C. G. Rose-Petruck, "Ultrafast laboratory-based x-ray sources and their applications in chemical research," in Commercial and Biomedical Applications of Ultrafast Lasers III; J. Neev, A. Ostendorf, C. B. Schaffer; eds.Proc. SPIE 4978,77-91 (2003).
[CrossRef]

Legall, H.

H. Legall, H. Stiel, P. V. Nickles, A. A. Bjeoumikhov, N. Langhoff, M. Haschke, V.A. Arkadiev, and R. Wedell, "Applications of highly oriented Pyrolytic Graphite (HOPG) for x ray diagnostics and spectroscopy," in Laser-Generated, Synchrotron, and Other Laboratory X-Ray and EUV Sources, Optics, and Applications II; G. A. Kyrala, J.-C. J. Gauthier, C. A. MacDonald, A. M. Khounsary; eds.Proc. SPIE 5918,11-21 (2005).

Munkholm, A.

A. K. Freund, A. Munkholm, and S. Brennan, "X-ray diffraction properties of highly oriented pyrolytic graphite," in Optics for High-Brightness Synchrotron Radiation Beamlines II; L. E. Berman, J. A.; eds.Proc. SPIE 2856,68-79 (1996).
[CrossRef]

Nickles, P. V.

H. Legall, H. Stiel, P. V. Nickles, A. A. Bjeoumikhov, N. Langhoff, M. Haschke, V.A. Arkadiev, and R. Wedell, "Applications of highly oriented Pyrolytic Graphite (HOPG) for x ray diagnostics and spectroscopy," in Laser-Generated, Synchrotron, and Other Laboratory X-Ray and EUV Sources, Optics, and Applications II; G. A. Kyrala, J.-C. J. Gauthier, C. A. MacDonald, A. M. Khounsary; eds.Proc. SPIE 5918,11-21 (2005).

Nothelle, U.

Ohler, M.

M. Ohler, M. Sanchez del Rio, A. Tuffanelli, M. Gambaccini, A. Taibi, A. Fantini, and G. Pareschiet, "X-ray topographic determination of the granular structure in a graphite mosaic crystal: a three-dimensional reconstruction," J. Appl. Cryst. 33,1023 (2000).
[CrossRef]

Pak, A.

A. Pak, G. Gregori, J. Knight, K. Campbell, D. Price, B. Hammel, O. L. Landen, and S. H. Glenzer, "X-ray line measurements with high efficiency Bragg crystals," Rev. Sci. Instrum. 75,3747 (2004).
[CrossRef]

Pareschi, G.

M. Sanchez del Rio, M. Gambaccini, G. Pareschi, A. Taibi, A. Tuffanelli, and A. Freund, "Focusing properties of mosaic crystals," Crystal and Multilayer Optics; A. T. Macrander, A. K. Freund, T. Ishikawa, and D. M. Mills; eds. in Proc.SPIE 3448,246 (1998).
[CrossRef]

Pareschiet, G.

M. Ohler, M. Sanchez del Rio, A. Tuffanelli, M. Gambaccini, A. Taibi, A. Fantini, and G. Pareschiet, "X-ray topographic determination of the granular structure in a graphite mosaic crystal: a three-dimensional reconstruction," J. Appl. Cryst. 33,1023 (2000).
[CrossRef]

Pattisson, P.

C. Bressler, M. Saes, M. Cherugi, D. Grolimund, R. Abela, and P. Pattisson, "Towards structural dynamics in condensed systems exploiting ultrafast time-resolved x-ray absorption spectroscopy," J. Chem. Phys. 116,2955 (2002).
[CrossRef]

Price, D.

A. Pak, G. Gregori, J. Knight, K. Campbell, D. Price, B. Hammel, O. L. Landen, and S. H. Glenzer, "X-ray line measurements with high efficiency Bragg crystals," Rev. Sci. Instrum. 75,3747 (2004).
[CrossRef]

Rabe, J.

A. Bjeoumikhov, N. Langhoff, J. Rabe, and R. Wedell, "A modular system consisting of a microfocus x-ray source and different capillary optics for XRF and XRD applications," X-Ray Spectrom. 33,312 (2004).
[CrossRef]

Raksi, F.

F. Raksi, K. R. Wilson, Z. Jiang, A. Ikhlef, C. Y. Cote, and J.-C. Kieffer, "Ultrafast X-ray absorption probing of a chemical reaction," J. Chem. Phys. 104,6066 (1996).
[CrossRef]

Rose-Petruck, C. G.

T. Lee, Y. Jiang, F. Benesch, and C. G. Rose-Petruck, "Ultrafast laboratory-based x-ray sources and their applications in chemical research," in Commercial and Biomedical Applications of Ultrafast Lasers III; J. Neev, A. Ostendorf, C. B. Schaffer; eds.Proc. SPIE 4978,77-91 (2003).
[CrossRef]

Saes, M.

C. Bressler, M. Saes, M. Cherugi, D. Grolimund, R. Abela, and P. Pattisson, "Towards structural dynamics in condensed systems exploiting ultrafast time-resolved x-ray absorption spectroscopy," J. Chem. Phys. 116,2955 (2002).
[CrossRef]

Sanchez del Rio, M.

M. Ohler, M. Sanchez del Rio, A. Tuffanelli, M. Gambaccini, A. Taibi, A. Fantini, and G. Pareschiet, "X-ray topographic determination of the granular structure in a graphite mosaic crystal: a three-dimensional reconstruction," J. Appl. Cryst. 33,1023 (2000).
[CrossRef]

M. Sanchez del Rio, M. Gambaccini, G. Pareschi, A. Taibi, A. Tuffanelli, and A. Freund, "Focusing properties of mosaic crystals," Crystal and Multilayer Optics; A. T. Macrander, A. K. Freund, T. Ishikawa, and D. M. Mills; eds. in Proc.SPIE 3448,246 (1998).
[CrossRef]

Shevelko, A.

A. Shevelko, A. Antonov, I. Grigorieva, Y. Kasyanov, O. Yakushev, L. V. Knight, and Q. Wang, "X-ray focusing crystal von Hamos spectrometer with a CCD linear array as a detector," in Advances in Laboratory-based X-Ray Sources and Optics; C. A. MacDonald, and A. M. Khounsary; eds.Proc. SPIE 4144, 148-154 (2000).
[CrossRef]

Shevelko, A. P.

A. P. Shevelko, Y. S. Kasyanov, O. F. Yakushev, and L. V. Knight, "Compact focusing von Hamos-spectrometer for quantitative x-ray spectroscopy," Rev. Sci. Instrum. 73, 3458 (2002).
[CrossRef]

Sparks, C. J.

G. E. Ice and C. J. Sparks, "Mosaic crystal x-ray spectrometer to resolve inelastic background from anomalous scattering experiments," Nucl. Instrum. Methods Phys. Res. A 291,110 (1990).
[CrossRef]

Steinkopf, R.

Stiel, H.

H. Legall, H. Stiel, P. V. Nickles, A. A. Bjeoumikhov, N. Langhoff, M. Haschke, V.A. Arkadiev, and R. Wedell, "Applications of highly oriented Pyrolytic Graphite (HOPG) for x ray diagnostics and spectroscopy," in Laser-Generated, Synchrotron, and Other Laboratory X-Ray and EUV Sources, Optics, and Applications II; G. A. Kyrala, J.-C. J. Gauthier, C. A. MacDonald, A. M. Khounsary; eds.Proc. SPIE 5918,11-21 (2005).

Taibi, A.

M. Ohler, M. Sanchez del Rio, A. Tuffanelli, M. Gambaccini, A. Taibi, A. Fantini, and G. Pareschiet, "X-ray topographic determination of the granular structure in a graphite mosaic crystal: a three-dimensional reconstruction," J. Appl. Cryst. 33,1023 (2000).
[CrossRef]

M. Sanchez del Rio, M. Gambaccini, G. Pareschi, A. Taibi, A. Tuffanelli, and A. Freund, "Focusing properties of mosaic crystals," Crystal and Multilayer Optics; A. T. Macrander, A. K. Freund, T. Ishikawa, and D. M. Mills; eds. in Proc.SPIE 3448,246 (1998).
[CrossRef]

Tuffanelli, A.

M. Ohler, M. Sanchez del Rio, A. Tuffanelli, M. Gambaccini, A. Taibi, A. Fantini, and G. Pareschiet, "X-ray topographic determination of the granular structure in a graphite mosaic crystal: a three-dimensional reconstruction," J. Appl. Cryst. 33,1023 (2000).
[CrossRef]

M. Sanchez del Rio, M. Gambaccini, G. Pareschi, A. Taibi, A. Tuffanelli, and A. Freund, "Focusing properties of mosaic crystals," Crystal and Multilayer Optics; A. T. Macrander, A. K. Freund, T. Ishikawa, and D. M. Mills; eds. in Proc.SPIE 3448,246 (1998).
[CrossRef]

Uschmann, I.

Wang, Q.

A. Shevelko, A. Antonov, I. Grigorieva, Y. Kasyanov, O. Yakushev, L. V. Knight, and Q. Wang, "X-ray focusing crystal von Hamos spectrometer with a CCD linear array as a detector," in Advances in Laboratory-based X-Ray Sources and Optics; C. A. MacDonald, and A. M. Khounsary; eds.Proc. SPIE 4144, 148-154 (2000).
[CrossRef]

Wedell, R.

H. Legall, H. Stiel, P. V. Nickles, A. A. Bjeoumikhov, N. Langhoff, M. Haschke, V.A. Arkadiev, and R. Wedell, "Applications of highly oriented Pyrolytic Graphite (HOPG) for x ray diagnostics and spectroscopy," in Laser-Generated, Synchrotron, and Other Laboratory X-Ray and EUV Sources, Optics, and Applications II; G. A. Kyrala, J.-C. J. Gauthier, C. A. MacDonald, A. M. Khounsary; eds.Proc. SPIE 5918,11-21 (2005).

A. Bjeoumikhov, N. Langhoff, J. Rabe, and R. Wedell, "A modular system consisting of a microfocus x-ray source and different capillary optics for XRF and XRD applications," X-Ray Spectrom. 33,312 (2004).
[CrossRef]

Wilson, K. R.

F. Raksi, K. R. Wilson, Z. Jiang, A. Ikhlef, C. Y. Cote, and J.-C. Kieffer, "Ultrafast X-ray absorption probing of a chemical reaction," J. Chem. Phys. 104,6066 (1996).
[CrossRef]

Woerner, M.

M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, "Coherent atomic motions in a nanostructure studied by femtosecond x-ray diffraction," Science 306,1771 (2004).
[CrossRef] [PubMed]

Wolf, J.

J. Härtwig, G. Hölzer, J. Wolf, and E. Förster, "Remeasurement of the profile of the characteristic Cu Ka emission line with high precision and accuracy," J. Appl. Cryst. 26,539 (1993).
[CrossRef]

Woo, J. C.

M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, "Coherent atomic motions in a nanostructure studied by femtosecond x-ray diffraction," Science 306,1771 (2004).
[CrossRef] [PubMed]

Yakushev, O.

A. Shevelko, A. Antonov, I. Grigorieva, Y. Kasyanov, O. Yakushev, L. V. Knight, and Q. Wang, "X-ray focusing crystal von Hamos spectrometer with a CCD linear array as a detector," in Advances in Laboratory-based X-Ray Sources and Optics; C. A. MacDonald, and A. M. Khounsary; eds.Proc. SPIE 4144, 148-154 (2000).
[CrossRef]

Yakushev, O. F.

A. P. Shevelko, Y. S. Kasyanov, O. F. Yakushev, and L. V. Knight, "Compact focusing von Hamos-spectrometer for quantitative x-ray spectroscopy," Rev. Sci. Instrum. 73, 3458 (2002).
[CrossRef]

Zhavoronkov, N.

M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, "Coherent atomic motions in a nanostructure studied by femtosecond x-ray diffraction," Science 306,1771 (2004).
[CrossRef] [PubMed]

Appl. Opt.

Chem. Rev.

C. Bressler and M. Chergui, "Ultrafast x-ray absorption spevctroscopy," Chem. Rev. 104,1781 (2004).
[CrossRef] [PubMed]

J. Appl. Cryst.

J. Härtwig, G. Hölzer, J. Wolf, and E. Förster, "Remeasurement of the profile of the characteristic Cu Ka emission line with high precision and accuracy," J. Appl. Cryst. 26,539 (1993).
[CrossRef]

M. Ohler, M. Sanchez del Rio, A. Tuffanelli, M. Gambaccini, A. Taibi, A. Fantini, and G. Pareschiet, "X-ray topographic determination of the granular structure in a graphite mosaic crystal: a three-dimensional reconstruction," J. Appl. Cryst. 33,1023 (2000).
[CrossRef]

J. Chem. Phys.

C. Bressler, M. Saes, M. Cherugi, D. Grolimund, R. Abela, and P. Pattisson, "Towards structural dynamics in condensed systems exploiting ultrafast time-resolved x-ray absorption spectroscopy," J. Chem. Phys. 116,2955 (2002).
[CrossRef]

F. Raksi, K. R. Wilson, Z. Jiang, A. Ikhlef, C. Y. Cote, and J.-C. Kieffer, "Ultrafast X-ray absorption probing of a chemical reaction," J. Chem. Phys. 104,6066 (1996).
[CrossRef]

LLE Review

"Signatures of Target Performance and Mixing in Titanium-Doped Target Implosions on OMEGA," LLE Review 70,82 (1997).

Nucl. Instrum. Methods Phys. Res. A

G. E. Ice and C. J. Sparks, "Mosaic crystal x-ray spectrometer to resolve inelastic background from anomalous scattering experiments," Nucl. Instrum. Methods Phys. Res. A 291,110 (1990).
[CrossRef]

Proc. SPIE

A. Shevelko, A. Antonov, I. Grigorieva, Y. Kasyanov, O. Yakushev, L. V. Knight, and Q. Wang, "X-ray focusing crystal von Hamos spectrometer with a CCD linear array as a detector," in Advances in Laboratory-based X-Ray Sources and Optics; C. A. MacDonald, and A. M. Khounsary; eds.Proc. SPIE 4144, 148-154 (2000).
[CrossRef]

T. Lee, Y. Jiang, F. Benesch, and C. G. Rose-Petruck, "Ultrafast laboratory-based x-ray sources and their applications in chemical research," in Commercial and Biomedical Applications of Ultrafast Lasers III; J. Neev, A. Ostendorf, C. B. Schaffer; eds.Proc. SPIE 4978,77-91 (2003).
[CrossRef]

H. Legall, H. Stiel, P. V. Nickles, A. A. Bjeoumikhov, N. Langhoff, M. Haschke, V.A. Arkadiev, and R. Wedell, "Applications of highly oriented Pyrolytic Graphite (HOPG) for x ray diagnostics and spectroscopy," in Laser-Generated, Synchrotron, and Other Laboratory X-Ray and EUV Sources, Optics, and Applications II; G. A. Kyrala, J.-C. J. Gauthier, C. A. MacDonald, A. M. Khounsary; eds.Proc. SPIE 5918,11-21 (2005).

A. K. Freund, A. Munkholm, and S. Brennan, "X-ray diffraction properties of highly oriented pyrolytic graphite," in Optics for High-Brightness Synchrotron Radiation Beamlines II; L. E. Berman, J. A.; eds.Proc. SPIE 2856,68-79 (1996).
[CrossRef]

Rev. Sci. Instrum.

A. P. Shevelko, Y. S. Kasyanov, O. F. Yakushev, and L. V. Knight, "Compact focusing von Hamos-spectrometer for quantitative x-ray spectroscopy," Rev. Sci. Instrum. 73, 3458 (2002).
[CrossRef]

A. Pak, G. Gregori, J. Knight, K. Campbell, D. Price, B. Hammel, O. L. Landen, and S. H. Glenzer, "X-ray line measurements with high efficiency Bragg crystals," Rev. Sci. Instrum. 75,3747 (2004).
[CrossRef]

Science

M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, "Coherent atomic motions in a nanostructure studied by femtosecond x-ray diffraction," Science 306,1771 (2004).
[CrossRef] [PubMed]

SPIE

M. Sanchez del Rio, M. Gambaccini, G. Pareschi, A. Taibi, A. Tuffanelli, and A. Freund, "Focusing properties of mosaic crystals," Crystal and Multilayer Optics; A. T. Macrander, A. K. Freund, T. Ishikawa, and D. M. Mills; eds. in Proc.SPIE 3448,246 (1998).
[CrossRef]

X-Ray Spectrom.

A. Bjeoumikhov, N. Langhoff, J. Rabe, and R. Wedell, "A modular system consisting of a microfocus x-ray source and different capillary optics for XRF and XRD applications," X-Ray Spectrom. 33,312 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Diffraction properties of HOPG. The mosaic focusing is illustrated for a monochromatic beam (thick lines). Rays emitted by a point source are focused into a point in the image plane if the crystallites are lying on a Rowland circle. This parafocusing occurs in 1:1 magnification geometry, for which the distance F between source and crystal and crystal and image plane are equal. In this geometry the best energy resolution is expected. Also shown is the focusing error arising from reflection of crystallites out of the depth. For the experiment a CCD was placed in the image plane and a microfocus x-ray tube was used as source.

Fig. 2.
Fig. 2.

The images of the recorded Cu Kα1 and Kα2 lines for different source-crystal and crystal-detector distances F in (002)- reflection (upper picture) and in (004)-reflection (lower picture) obtained with 15 µm and 150 µm thick HOPG films. The acquisition time to record the spectra of the 15 µm was 5 sec and 1 sec for the 150 µm crystal.

Fig. 3.
Fig. 3.

Reflection profiles of the 15 µm for the (002)-reflection (grey curves) and the (004)- reflection (dark curves) for different distances.

Tables (1)

Tables Icon

Table 1. Comparison of crystal properties at 8 keV.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E Δ E = tan ( θ B ) Δ θ
Δ s = 2 D cos ( θ B ) ,

Metrics