Abstract

Confinement of light in nano-scale region of three silver nanocylinder pairs is studied by finite-difference time-domain simulations. Light is confined in gaps between nanocylinders due to localized plasmon excitation and the strongest local-field enhancement exhibits in the gap of the second pair. The surface plasmon resonance has red-shift for nanocylinders of larger radius. The resonance wavelength and local-field enhancement are nearly proportional to the radius of nanocylinders in visible light region, i.e., the plasmon resonance of nanocylinder pairs is predictable and controllable. An open cavity model is proposed to understand the linear relation between the resonant wavelength and the radius of nanocylinders.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391,667-669 (1998).
    [CrossRef]
  2. V. M. Shalaev, ed., "Optical Properties of Nanostructured Random Media" (Springer-Verlag, Berlin, 2002).
  3. C. Bohren and D. Huffman, "Absorption and Scattering of Light by Small Particles" (Wiley, New York, 1983).
  4. U. Kreibig, and M. Vollmer, "Optical Properties of Metal Clusters" (Springer-Verlag, Berlin, 1995).
  5. D. A. Schultz, "Plasmon resonant particles for biological detection," Curr. Opin. Biotechnol. 14,13-22 (2003).
    [CrossRef] [PubMed]
  6. M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, "Nanophotonics: Design, fabrication, and operation of nanometric devices using optical near fields," IEEE J. Sel. Top. Quantum Electron. 8,839-862 (2002).
    [CrossRef]
  7. P. N. Prasad, "Nanophotonics" (Wiley, Hoboken, NJ, 2004).
  8. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, "Plasmonics-A route to nanoscale optical devices," Adv. Mater. 13,1501-1505 (2001).
    [CrossRef]
  9. J. Tominaga and D. P. Tsai, eds., "Optical Nanotehcnologies-The Manipulation of Surface and Local Plasmons", (Springer, Heidelberg, 2002).
  10. R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, "Photoinduced conversion of silver nanospheres to nanoprisms," Science 294,1901-1903 (2001).
    [CrossRef] [PubMed]
  11. Y. G. Sun and Y. N. Xia, "Shape-controlled synthesis of gold and silver nanoparticles," Science 298,2176-2179 (2002).
    [CrossRef] [PubMed]
  12. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116,6755-6759 (2002).
    [CrossRef]
  13. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phy. Rev. Lett. 95,257403 (2005).
    [CrossRef]
  14. J. Kottmann and O. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express 8,655-663 (2001).
    [CrossRef] [PubMed]
  15. J. Kottmann and O. Martin, "Retardation-induced plasmon resonances in coupled nanoparticles, " Opt. Lett. 26,1096-1098 (2001).
    [CrossRef]
  16. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220,137-141 (2003).
    [CrossRef]
  17. K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schiltz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3,1087-1090 (2003).
    [CrossRef]
  18. C. Rockstuhl, M. G. Salt, and H. P. Herzig, "Analyzing the scattering properties of coupled metallic nanoparticles," J. Opt. Soc. Am. A. 21,1761-1768 (2004).
    [CrossRef] [PubMed]
  19. M.-Y. Ng andW.-C. Liu, "Local field enhancement of asymmetric metallic nanocylinder pairs," J. Korean Phys. Soc. 47, S135-S139 (2005).
  20. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71,235408 (2005).
    [CrossRef]
  21. P. Ghenuche, R. Quidant, and G. Badenes, "Cumulative plasmon field enhancement in finite metal particle chains," Opt. Lett. 30,1882-1884 (2005).
    [CrossRef] [PubMed]
  22. M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57,783-823 (1985).
    [CrossRef]
  23. S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 75,1102-1106 (1997).
    [CrossRef]
  24. M. Quinten, A. Leitner, J. Krenn, and F. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23,1331-1333 (1998).
    [CrossRef]
  25. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, and J. P. Goudonnet, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82,2590-2593 (1999).
    [CrossRef]
  26. S. Maier, P. Kik, H. Atwater, S. Meltzer, E. Harel, B. Loel, and A. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2,229-232 (2003).
    [CrossRef] [PubMed]
  27. C. Girard, and R. Quidant, "Near-field optical transmittance of metal particle chain waveguides," Opt. Express 12,6141-6146 (2004),
    [CrossRef]
  28. C. Girard,"Near-fields in Nanostructures," Rep. Prog. Phys. 68,1883-1933 (2005).
    [CrossRef]
  29. W.-C. Liu, C.-Y. Wen, K.-H. Chen, W. C. Lin, and D. P. Tsai, "Near-field images of the AgOx-type superresolution near-field structure," Appl. Phys. Lett. 78,685-687 (2001).
    [CrossRef]
  30. W.-C. Liu and D. P. Tsai, "Nonlinear near-field optical effects of the AgOx-type super-resolution near-field structure," Jpn. J. Appl. Phys. 42,1031-1032 (2003).
    [CrossRef]
  31. W.-C. Liu, M.-Y. Ng, and D. P. Tsai, "Surface plasmon effects on the far-field signals of Agox-type super resolution near-field structure," Jpn. J. Appl. Phys. 43,4713-4717 (2004).
    [CrossRef]
  32. W.-C. Liu, M.-Y. Ng, and D. P. Tsai, "Enhanced resolution of AgOx-type super-RENS disks with periodic silver nanoclusters," Scanning,  26,I98-I101 (2004).
    [PubMed]
  33. T. C. Chu, W.-C. Liu, and D. P. Tsai, "Enhanced resolution induced by random silver nanoparticles in near-field optical disks," Opt. Commun. 246,561-567 (2005).
    [CrossRef]
  34. M.-Y. Ng and W.-C. Liu, "Super-resolution and frequency-dependent efficiency of nearfield optical disks with silver nanoparticles," Opt. Express 13,9422-9430 (2005).
    [CrossRef] [PubMed]
  35. A. Taflove, "Computational Electrodynamics" (Artech House, Boston-London, 1995).
  36. J. Judkins and R. Ziolkowski, "Finite-difference time-domain modeling of nonperfectly conducting metallic thinfilm gratings," J. Opt. Soc. Am. A 12,1974-1983 (1995).
    [CrossRef]
  37. A. Taflove, "Advances in Computational Electrodynamics", (Artech House, Boston, MA, 1998).
  38. K.-P Charle, L. Konig, S. Nepijko, I. Rabin, and W.schulze, "The surface plasmon resonance in free and embedded Ag-cluster in the size range 1.5 nm < D < 30 nm," Cryst. Res. Technol. 33, 1085-1096 (1998).
    [CrossRef]
  39. T. Klar, M. Perner, S. Grosse, G. von Plessen,W. Spirkl, and J. Feldmann, "Surface-plasmon resonances in single metallic nanoparticles," Phys. Rev. Lett. 80,4249-4252 (1998).
    [CrossRef]
  40. E. D. Palik ed., "Handbook of Optical Constants of Solids" (Academic Press, Inc., New York, 1985).

2005 (7)

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phy. Rev. Lett. 95,257403 (2005).
[CrossRef]

M.-Y. Ng andW.-C. Liu, "Local field enhancement of asymmetric metallic nanocylinder pairs," J. Korean Phys. Soc. 47, S135-S139 (2005).

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71,235408 (2005).
[CrossRef]

C. Girard,"Near-fields in Nanostructures," Rep. Prog. Phys. 68,1883-1933 (2005).
[CrossRef]

T. C. Chu, W.-C. Liu, and D. P. Tsai, "Enhanced resolution induced by random silver nanoparticles in near-field optical disks," Opt. Commun. 246,561-567 (2005).
[CrossRef]

P. Ghenuche, R. Quidant, and G. Badenes, "Cumulative plasmon field enhancement in finite metal particle chains," Opt. Lett. 30,1882-1884 (2005).
[CrossRef] [PubMed]

M.-Y. Ng and W.-C. Liu, "Super-resolution and frequency-dependent efficiency of nearfield optical disks with silver nanoparticles," Opt. Express 13,9422-9430 (2005).
[CrossRef] [PubMed]

2004 (4)

C. Girard, and R. Quidant, "Near-field optical transmittance of metal particle chain waveguides," Opt. Express 12,6141-6146 (2004),
[CrossRef]

W.-C. Liu, M.-Y. Ng, and D. P. Tsai, "Surface plasmon effects on the far-field signals of Agox-type super resolution near-field structure," Jpn. J. Appl. Phys. 43,4713-4717 (2004).
[CrossRef]

W.-C. Liu, M.-Y. Ng, and D. P. Tsai, "Enhanced resolution of AgOx-type super-RENS disks with periodic silver nanoclusters," Scanning,  26,I98-I101 (2004).
[PubMed]

C. Rockstuhl, M. G. Salt, and H. P. Herzig, "Analyzing the scattering properties of coupled metallic nanoparticles," J. Opt. Soc. Am. A. 21,1761-1768 (2004).
[CrossRef] [PubMed]

2003 (5)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220,137-141 (2003).
[CrossRef]

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schiltz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3,1087-1090 (2003).
[CrossRef]

D. A. Schultz, "Plasmon resonant particles for biological detection," Curr. Opin. Biotechnol. 14,13-22 (2003).
[CrossRef] [PubMed]

S. Maier, P. Kik, H. Atwater, S. Meltzer, E. Harel, B. Loel, and A. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2,229-232 (2003).
[CrossRef] [PubMed]

W.-C. Liu and D. P. Tsai, "Nonlinear near-field optical effects of the AgOx-type super-resolution near-field structure," Jpn. J. Appl. Phys. 42,1031-1032 (2003).
[CrossRef]

2002 (3)

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, "Nanophotonics: Design, fabrication, and operation of nanometric devices using optical near fields," IEEE J. Sel. Top. Quantum Electron. 8,839-862 (2002).
[CrossRef]

Y. G. Sun and Y. N. Xia, "Shape-controlled synthesis of gold and silver nanoparticles," Science 298,2176-2179 (2002).
[CrossRef] [PubMed]

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116,6755-6759 (2002).
[CrossRef]

2001 (5)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, "Plasmonics-A route to nanoscale optical devices," Adv. Mater. 13,1501-1505 (2001).
[CrossRef]

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, "Photoinduced conversion of silver nanospheres to nanoprisms," Science 294,1901-1903 (2001).
[CrossRef] [PubMed]

W.-C. Liu, C.-Y. Wen, K.-H. Chen, W. C. Lin, and D. P. Tsai, "Near-field images of the AgOx-type superresolution near-field structure," Appl. Phys. Lett. 78,685-687 (2001).
[CrossRef]

J. Kottmann and O. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express 8,655-663 (2001).
[CrossRef] [PubMed]

J. Kottmann and O. Martin, "Retardation-induced plasmon resonances in coupled nanoparticles, " Opt. Lett. 26,1096-1098 (2001).
[CrossRef]

1999 (1)

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, and J. P. Goudonnet, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82,2590-2593 (1999).
[CrossRef]

1998 (3)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391,667-669 (1998).
[CrossRef]

T. Klar, M. Perner, S. Grosse, G. von Plessen,W. Spirkl, and J. Feldmann, "Surface-plasmon resonances in single metallic nanoparticles," Phys. Rev. Lett. 80,4249-4252 (1998).
[CrossRef]

M. Quinten, A. Leitner, J. Krenn, and F. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23,1331-1333 (1998).
[CrossRef]

1997 (1)

S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 75,1102-1106 (1997).
[CrossRef]

1995 (1)

1985 (1)

M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57,783-823 (1985).
[CrossRef]

Atwater, H.

S. Maier, P. Kik, H. Atwater, S. Meltzer, E. Harel, B. Loel, and A. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2,229-232 (2003).
[CrossRef] [PubMed]

Atwater, H. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71,235408 (2005).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, "Plasmonics-A route to nanoscale optical devices," Adv. Mater. 13,1501-1505 (2001).
[CrossRef]

Aussenegg, F.

Aussenegg, F. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phy. Rev. Lett. 95,257403 (2005).
[CrossRef]

Badenes, G.

Barbic, M.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116,6755-6759 (2002).
[CrossRef]

Bourillot, E.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, and J. P. Goudonnet, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82,2590-2593 (1999).
[CrossRef]

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, "Plasmonics-A route to nanoscale optical devices," Adv. Mater. 13,1501-1505 (2001).
[CrossRef]

Cao, Y. W.

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, "Photoinduced conversion of silver nanospheres to nanoprisms," Science 294,1901-1903 (2001).
[CrossRef] [PubMed]

Chen, K.-H.

W.-C. Liu, C.-Y. Wen, K.-H. Chen, W. C. Lin, and D. P. Tsai, "Near-field images of the AgOx-type superresolution near-field structure," Appl. Phys. Lett. 78,685-687 (2001).
[CrossRef]

Chu, T. C.

T. C. Chu, W.-C. Liu, and D. P. Tsai, "Enhanced resolution induced by random silver nanoparticles in near-field optical disks," Opt. Commun. 246,561-567 (2005).
[CrossRef]

Dereux, A.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, and J. P. Goudonnet, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82,2590-2593 (1999).
[CrossRef]

Ditlbacher, H.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phy. Rev. Lett. 95,257403 (2005).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391,667-669 (1998).
[CrossRef]

Emory, S. R.

S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 75,1102-1106 (1997).
[CrossRef]

Feldmann, J.

T. Klar, M. Perner, S. Grosse, G. von Plessen,W. Spirkl, and J. Feldmann, "Surface-plasmon resonances in single metallic nanoparticles," Phys. Rev. Lett. 80,4249-4252 (1998).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391,667-669 (1998).
[CrossRef]

Ghenuche, P.

Girard, C.

Goudonnet, J. P.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, and J. P. Goudonnet, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82,2590-2593 (1999).
[CrossRef]

Grosse, S.

T. Klar, M. Perner, S. Grosse, G. von Plessen,W. Spirkl, and J. Feldmann, "Surface-plasmon resonances in single metallic nanoparticles," Phys. Rev. Lett. 80,4249-4252 (1998).
[CrossRef]

Harel, E.

S. Maier, P. Kik, H. Atwater, S. Meltzer, E. Harel, B. Loel, and A. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2,229-232 (2003).
[CrossRef] [PubMed]

Herzig, H. P.

C. Rockstuhl, M. G. Salt, and H. P. Herzig, "Analyzing the scattering properties of coupled metallic nanoparticles," J. Opt. Soc. Am. A. 21,1761-1768 (2004).
[CrossRef] [PubMed]

Hofer, F.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phy. Rev. Lett. 95,257403 (2005).
[CrossRef]

Hohenau, A.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phy. Rev. Lett. 95,257403 (2005).
[CrossRef]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220,137-141 (2003).
[CrossRef]

Jin, R. C.

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, "Photoinduced conversion of silver nanospheres to nanoprisms," Science 294,1901-1903 (2001).
[CrossRef] [PubMed]

Judkins, J.

Kawazoe, T.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, "Nanophotonics: Design, fabrication, and operation of nanometric devices using optical near fields," IEEE J. Sel. Top. Quantum Electron. 8,839-862 (2002).
[CrossRef]

Kelly, K. L.

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, "Photoinduced conversion of silver nanospheres to nanoprisms," Science 294,1901-1903 (2001).
[CrossRef] [PubMed]

Kik, P.

S. Maier, P. Kik, H. Atwater, S. Meltzer, E. Harel, B. Loel, and A. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2,229-232 (2003).
[CrossRef] [PubMed]

Kik, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, "Plasmonics-A route to nanoscale optical devices," Adv. Mater. 13,1501-1505 (2001).
[CrossRef]

Klar, T.

T. Klar, M. Perner, S. Grosse, G. von Plessen,W. Spirkl, and J. Feldmann, "Surface-plasmon resonances in single metallic nanoparticles," Phys. Rev. Lett. 80,4249-4252 (1998).
[CrossRef]

Kobayashi, K.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, "Nanophotonics: Design, fabrication, and operation of nanometric devices using optical near fields," IEEE J. Sel. Top. Quantum Electron. 8,839-862 (2002).
[CrossRef]

Kottmann, J.

Kreibig, U.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phy. Rev. Lett. 95,257403 (2005).
[CrossRef]

Krenn, J.

Krenn, J. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phy. Rev. Lett. 95,257403 (2005).
[CrossRef]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220,137-141 (2003).
[CrossRef]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, and J. P. Goudonnet, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82,2590-2593 (1999).
[CrossRef]

Lacroute, Y.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, and J. P. Goudonnet, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82,2590-2593 (1999).
[CrossRef]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220,137-141 (2003).
[CrossRef]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220,137-141 (2003).
[CrossRef]

M. Quinten, A. Leitner, J. Krenn, and F. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23,1331-1333 (1998).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391,667-669 (1998).
[CrossRef]

Lin, W. C.

W.-C. Liu, C.-Y. Wen, K.-H. Chen, W. C. Lin, and D. P. Tsai, "Near-field images of the AgOx-type superresolution near-field structure," Appl. Phys. Lett. 78,685-687 (2001).
[CrossRef]

Liu, W.-C.

T. C. Chu, W.-C. Liu, and D. P. Tsai, "Enhanced resolution induced by random silver nanoparticles in near-field optical disks," Opt. Commun. 246,561-567 (2005).
[CrossRef]

M.-Y. Ng andW.-C. Liu, "Local field enhancement of asymmetric metallic nanocylinder pairs," J. Korean Phys. Soc. 47, S135-S139 (2005).

M.-Y. Ng and W.-C. Liu, "Super-resolution and frequency-dependent efficiency of nearfield optical disks with silver nanoparticles," Opt. Express 13,9422-9430 (2005).
[CrossRef] [PubMed]

W.-C. Liu, M.-Y. Ng, and D. P. Tsai, "Enhanced resolution of AgOx-type super-RENS disks with periodic silver nanoclusters," Scanning,  26,I98-I101 (2004).
[PubMed]

W.-C. Liu, M.-Y. Ng, and D. P. Tsai, "Surface plasmon effects on the far-field signals of Agox-type super resolution near-field structure," Jpn. J. Appl. Phys. 43,4713-4717 (2004).
[CrossRef]

W.-C. Liu and D. P. Tsai, "Nonlinear near-field optical effects of the AgOx-type super-resolution near-field structure," Jpn. J. Appl. Phys. 42,1031-1032 (2003).
[CrossRef]

W.-C. Liu, C.-Y. Wen, K.-H. Chen, W. C. Lin, and D. P. Tsai, "Near-field images of the AgOx-type superresolution near-field structure," Appl. Phys. Lett. 78,685-687 (2001).
[CrossRef]

Loel, B.

S. Maier, P. Kik, H. Atwater, S. Meltzer, E. Harel, B. Loel, and A. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2,229-232 (2003).
[CrossRef] [PubMed]

Maier, S.

S. Maier, P. Kik, H. Atwater, S. Meltzer, E. Harel, B. Loel, and A. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2,229-232 (2003).
[CrossRef] [PubMed]

Maier, S. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71,235408 (2005).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, "Plasmonics-A route to nanoscale optical devices," Adv. Mater. 13,1501-1505 (2001).
[CrossRef]

Martin, O.

Meltzer, S.

S. Maier, P. Kik, H. Atwater, S. Meltzer, E. Harel, B. Loel, and A. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2,229-232 (2003).
[CrossRef] [PubMed]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, "Plasmonics-A route to nanoscale optical devices," Adv. Mater. 13,1501-1505 (2001).
[CrossRef]

Mirkin, C. A.

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, "Photoinduced conversion of silver nanospheres to nanoprisms," Science 294,1901-1903 (2001).
[CrossRef] [PubMed]

Mock, J. J.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schiltz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3,1087-1090 (2003).
[CrossRef]

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116,6755-6759 (2002).
[CrossRef]

Moskovits, M.

M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57,783-823 (1985).
[CrossRef]

Ng, M.-Y.

M.-Y. Ng and W.-C. Liu, "Super-resolution and frequency-dependent efficiency of nearfield optical disks with silver nanoparticles," Opt. Express 13,9422-9430 (2005).
[CrossRef] [PubMed]

M.-Y. Ng andW.-C. Liu, "Local field enhancement of asymmetric metallic nanocylinder pairs," J. Korean Phys. Soc. 47, S135-S139 (2005).

W.-C. Liu, M.-Y. Ng, and D. P. Tsai, "Surface plasmon effects on the far-field signals of Agox-type super resolution near-field structure," Jpn. J. Appl. Phys. 43,4713-4717 (2004).
[CrossRef]

W.-C. Liu, M.-Y. Ng, and D. P. Tsai, "Enhanced resolution of AgOx-type super-RENS disks with periodic silver nanoclusters," Scanning,  26,I98-I101 (2004).
[PubMed]

Nie, S.

S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 75,1102-1106 (1997).
[CrossRef]

Ohtsu, M.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, "Nanophotonics: Design, fabrication, and operation of nanometric devices using optical near fields," IEEE J. Sel. Top. Quantum Electron. 8,839-862 (2002).
[CrossRef]

Penninkhof, J. J.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71,235408 (2005).
[CrossRef]

Perner, M.

T. Klar, M. Perner, S. Grosse, G. von Plessen,W. Spirkl, and J. Feldmann, "Surface-plasmon resonances in single metallic nanoparticles," Phys. Rev. Lett. 80,4249-4252 (1998).
[CrossRef]

Polman, A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71,235408 (2005).
[CrossRef]

Quidant, R.

Quinten, M.

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220,137-141 (2003).
[CrossRef]

Requicha, A.

S. Maier, P. Kik, H. Atwater, S. Meltzer, E. Harel, B. Loel, and A. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2,229-232 (2003).
[CrossRef] [PubMed]

Requicha, A. A. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, "Plasmonics-A route to nanoscale optical devices," Adv. Mater. 13,1501-1505 (2001).
[CrossRef]

Rockstuhl, C.

C. Rockstuhl, M. G. Salt, and H. P. Herzig, "Analyzing the scattering properties of coupled metallic nanoparticles," J. Opt. Soc. Am. A. 21,1761-1768 (2004).
[CrossRef] [PubMed]

Rogers, M.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phy. Rev. Lett. 95,257403 (2005).
[CrossRef]

Salt, M. G.

C. Rockstuhl, M. G. Salt, and H. P. Herzig, "Analyzing the scattering properties of coupled metallic nanoparticles," J. Opt. Soc. Am. A. 21,1761-1768 (2004).
[CrossRef] [PubMed]

Sangu, S.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, "Nanophotonics: Design, fabrication, and operation of nanometric devices using optical near fields," IEEE J. Sel. Top. Quantum Electron. 8,839-862 (2002).
[CrossRef]

Schatz, G. C.

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, "Photoinduced conversion of silver nanospheres to nanoprisms," Science 294,1901-1903 (2001).
[CrossRef] [PubMed]

Schiltz, S.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schiltz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3,1087-1090 (2003).
[CrossRef]

Schultz, D. A.

D. A. Schultz, "Plasmon resonant particles for biological detection," Curr. Opin. Biotechnol. 14,13-22 (2003).
[CrossRef] [PubMed]

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116,6755-6759 (2002).
[CrossRef]

Schultz, S.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116,6755-6759 (2002).
[CrossRef]

Smith, D. R.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schiltz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3,1087-1090 (2003).
[CrossRef]

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116,6755-6759 (2002).
[CrossRef]

Spirkl, W.

T. Klar, M. Perner, S. Grosse, G. von Plessen,W. Spirkl, and J. Feldmann, "Surface-plasmon resonances in single metallic nanoparticles," Phys. Rev. Lett. 80,4249-4252 (1998).
[CrossRef]

Su, K.-H.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schiltz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3,1087-1090 (2003).
[CrossRef]

Sun, Y. G.

Y. G. Sun and Y. N. Xia, "Shape-controlled synthesis of gold and silver nanoparticles," Science 298,2176-2179 (2002).
[CrossRef] [PubMed]

Sweatlock, L. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71,235408 (2005).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391,667-669 (1998).
[CrossRef]

Tsai, D. P.

T. C. Chu, W.-C. Liu, and D. P. Tsai, "Enhanced resolution induced by random silver nanoparticles in near-field optical disks," Opt. Commun. 246,561-567 (2005).
[CrossRef]

W.-C. Liu, M.-Y. Ng, and D. P. Tsai, "Enhanced resolution of AgOx-type super-RENS disks with periodic silver nanoclusters," Scanning,  26,I98-I101 (2004).
[PubMed]

W.-C. Liu, M.-Y. Ng, and D. P. Tsai, "Surface plasmon effects on the far-field signals of Agox-type super resolution near-field structure," Jpn. J. Appl. Phys. 43,4713-4717 (2004).
[CrossRef]

W.-C. Liu and D. P. Tsai, "Nonlinear near-field optical effects of the AgOx-type super-resolution near-field structure," Jpn. J. Appl. Phys. 42,1031-1032 (2003).
[CrossRef]

W.-C. Liu, C.-Y. Wen, K.-H. Chen, W. C. Lin, and D. P. Tsai, "Near-field images of the AgOx-type superresolution near-field structure," Appl. Phys. Lett. 78,685-687 (2001).
[CrossRef]

von Plessen, G.

T. Klar, M. Perner, S. Grosse, G. von Plessen,W. Spirkl, and J. Feldmann, "Surface-plasmon resonances in single metallic nanoparticles," Phys. Rev. Lett. 80,4249-4252 (1998).
[CrossRef]

Wagner, D.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phy. Rev. Lett. 95,257403 (2005).
[CrossRef]

Weeber, J. C.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, and J. P. Goudonnet, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82,2590-2593 (1999).
[CrossRef]

Wei, Q.-H.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schiltz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3,1087-1090 (2003).
[CrossRef]

Wen, C.-Y.

W.-C. Liu, C.-Y. Wen, K.-H. Chen, W. C. Lin, and D. P. Tsai, "Near-field images of the AgOx-type superresolution near-field structure," Appl. Phys. Lett. 78,685-687 (2001).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391,667-669 (1998).
[CrossRef]

Xia, Y. N.

Y. G. Sun and Y. N. Xia, "Shape-controlled synthesis of gold and silver nanoparticles," Science 298,2176-2179 (2002).
[CrossRef] [PubMed]

Yatsui, T.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, "Nanophotonics: Design, fabrication, and operation of nanometric devices using optical near fields," IEEE J. Sel. Top. Quantum Electron. 8,839-862 (2002).
[CrossRef]

Zhang, X.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schiltz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3,1087-1090 (2003).
[CrossRef]

Zheng, J. G.

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, "Photoinduced conversion of silver nanospheres to nanoprisms," Science 294,1901-1903 (2001).
[CrossRef] [PubMed]

Ziolkowski, R.

Adv. Mater. (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, "Plasmonics-A route to nanoscale optical devices," Adv. Mater. 13,1501-1505 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

W.-C. Liu, C.-Y. Wen, K.-H. Chen, W. C. Lin, and D. P. Tsai, "Near-field images of the AgOx-type superresolution near-field structure," Appl. Phys. Lett. 78,685-687 (2001).
[CrossRef]

Curr. Opin. Biotechnol. (1)

D. A. Schultz, "Plasmon resonant particles for biological detection," Curr. Opin. Biotechnol. 14,13-22 (2003).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, "Nanophotonics: Design, fabrication, and operation of nanometric devices using optical near fields," IEEE J. Sel. Top. Quantum Electron. 8,839-862 (2002).
[CrossRef]

J. Chem. Phys. (1)

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116,6755-6759 (2002).
[CrossRef]

J. Korean Phys. Soc. (1)

M.-Y. Ng andW.-C. Liu, "Local field enhancement of asymmetric metallic nanocylinder pairs," J. Korean Phys. Soc. 47, S135-S139 (2005).

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. A. (1)

C. Rockstuhl, M. G. Salt, and H. P. Herzig, "Analyzing the scattering properties of coupled metallic nanoparticles," J. Opt. Soc. Am. A. 21,1761-1768 (2004).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys. (2)

W.-C. Liu and D. P. Tsai, "Nonlinear near-field optical effects of the AgOx-type super-resolution near-field structure," Jpn. J. Appl. Phys. 42,1031-1032 (2003).
[CrossRef]

W.-C. Liu, M.-Y. Ng, and D. P. Tsai, "Surface plasmon effects on the far-field signals of Agox-type super resolution near-field structure," Jpn. J. Appl. Phys. 43,4713-4717 (2004).
[CrossRef]

Nano Lett. (1)

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schiltz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3,1087-1090 (2003).
[CrossRef]

Nat. Mater. (1)

S. Maier, P. Kik, H. Atwater, S. Meltzer, E. Harel, B. Loel, and A. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2,229-232 (2003).
[CrossRef] [PubMed]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391,667-669 (1998).
[CrossRef]

Opt. Commun. (2)

T. C. Chu, W.-C. Liu, and D. P. Tsai, "Enhanced resolution induced by random silver nanoparticles in near-field optical disks," Opt. Commun. 246,561-567 (2005).
[CrossRef]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220,137-141 (2003).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phy. Rev. Lett. (1)

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phy. Rev. Lett. 95,257403 (2005).
[CrossRef]

Phys. Rev. B (1)

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71,235408 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

T. Klar, M. Perner, S. Grosse, G. von Plessen,W. Spirkl, and J. Feldmann, "Surface-plasmon resonances in single metallic nanoparticles," Phys. Rev. Lett. 80,4249-4252 (1998).
[CrossRef]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, and J. P. Goudonnet, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82,2590-2593 (1999).
[CrossRef]

Rep. Prog. Phys. (1)

C. Girard,"Near-fields in Nanostructures," Rep. Prog. Phys. 68,1883-1933 (2005).
[CrossRef]

Rev. Mod. Phys. (1)

M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57,783-823 (1985).
[CrossRef]

Scanning (1)

W.-C. Liu, M.-Y. Ng, and D. P. Tsai, "Enhanced resolution of AgOx-type super-RENS disks with periodic silver nanoclusters," Scanning,  26,I98-I101 (2004).
[PubMed]

Science (3)

S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 75,1102-1106 (1997).
[CrossRef]

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, "Photoinduced conversion of silver nanospheres to nanoprisms," Science 294,1901-1903 (2001).
[CrossRef] [PubMed]

Y. G. Sun and Y. N. Xia, "Shape-controlled synthesis of gold and silver nanoparticles," Science 298,2176-2179 (2002).
[CrossRef] [PubMed]

Other (9)

V. M. Shalaev, ed., "Optical Properties of Nanostructured Random Media" (Springer-Verlag, Berlin, 2002).

C. Bohren and D. Huffman, "Absorption and Scattering of Light by Small Particles" (Wiley, New York, 1983).

U. Kreibig, and M. Vollmer, "Optical Properties of Metal Clusters" (Springer-Verlag, Berlin, 1995).

P. N. Prasad, "Nanophotonics" (Wiley, Hoboken, NJ, 2004).

J. Tominaga and D. P. Tsai, eds., "Optical Nanotehcnologies-The Manipulation of Surface and Local Plasmons", (Springer, Heidelberg, 2002).

A. Taflove, "Advances in Computational Electrodynamics", (Artech House, Boston, MA, 1998).

K.-P Charle, L. Konig, S. Nepijko, I. Rabin, and W.schulze, "The surface plasmon resonance in free and embedded Ag-cluster in the size range 1.5 nm < D < 30 nm," Cryst. Res. Technol. 33, 1085-1096 (1998).
[CrossRef]

E. D. Palik ed., "Handbook of Optical Constants of Solids" (Academic Press, Inc., New York, 1985).

A. Taflove, "Computational Electrodynamics" (Artech House, Boston-London, 1995).

Supplementary Material (4)

» Media 1: GIF (714 KB)     
» Media 2: GIF (597 KB)     
» Media 3: GIF (804 KB)     
» Media 4: GIF (461 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Array of three silver nanocylinder pairs. Two types of gaps are discussed: gap between two nanocylinders in a pair (dot line) and gap between adjacent pairs (dash line). In this work, both d and dp are set to be 20 nm, except the cases discussing the influence of interpair distance.

Fig. 2.
Fig. 2.

Movie of TM-mode near-field distributions of three nanocylinder pairs for incident wavelength (a) λ=460 nm, and (b) λ=650 nm, respectively. The radius of nanocylinders is varied from 20 nm to 75 nm. The gap of the second pair exhibites strongest local field enhancement at resonant conditions. [Media 1] [Media 2]

Fig. 3.
Fig. 3.

Near-field intensities in the gaps of three nanocylinder pairs as a function of nanocylinder radius. The wavelength of incident light is (a) λ=460 nm and (b) λ=650 nm, respectively. The plasmon resonance is excited when the radius of nanocylinder is (a) r=36 nm, and (b) r=58 nm, respectively.

Fig. 4.
Fig. 4.

Movie of TM-mode near-field distributions of three pairs cases with different interpair distance dp . The radius of nanocylinders is 30 nm. The wavelength of incident light is λ=460 nm. The highest local-field appears in the gap of the second pair with dp =70 nm at resonant conditions. [Media 3]

Fig. 5.
Fig. 5.

Near field intensity in the gap of the second pair as a function of different interpair distance for r=25, 30, and 36 nm. The wavelength of incident light is λ=460 nm. The resonant peak shifts to larger interpair distance with smaller radius of nanocylinders.

Fig. 6.
Fig. 6.

(a) Radius of nanocylinders and (b) near-field intensity vs resonant wavelength. There is a linear relation between radius and resonant wavelength.

Fig. 7.
Fig. 7.

Movie of total near-field distributions (left) and phases of the Ey component (right) for TM illumination at resonant conditions. The radius of nanocylinders and illuminating wavelength are varied from 36 nm to 72 nm and from 460 nm to 775 nm, respectively. [Media 4]

Fig. 8.
Fig. 8.

Equiphase lines (red and blue lines) of the three-pair arrays at the virtual boundaries (black lines) of the open cavity at resonant conditions. The center of the three-pair array is fixed and the positions of the first and the third pairs move outwards as the radius of nanocylinders increases. The inset shows a schematic plot of the three-pair array and the location of the virtual boundary. The phase value are 0.9 and -2.2 rad, respectively, and the phase difference between two boundaries is close to π

Metrics