Abstract

We report the results of a systematic experimental and theoretical study of 1.06 µm pumped supercontinuum generation in a range of holey fibers with different flattened dispersion profiles. Clear differences in terms of the underpinning mechanisms emerge depending on the spacing between the two fiber zero-dispersion wavelengths. By examining the phase matched wavelength range of the corresponding fiber dispersions, one can predict the maximum achievable supercontinuum bandwidth.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica-microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25 (2000).
    [CrossRef]
  2. A. Rulkov, M. Vyatkin, S. Popov, J. Taylor, and V. Gapontsev, "High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping," Opt. Express 13, 377 (2005).
    [CrossRef] [PubMed]
  3. J. M. Harbold, F. Ö. Ilday, F. W. Wise, T. A. Birks, W. J. Wadsworth, and Z. Chen, "Long-wavelength continuum generation about the second dispersion zero of a tapered fiber," Opt. Lett. 27, 1558 (2002).
    [CrossRef]
  4. A. V. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203901 (2001).
    [CrossRef] [PubMed]
  5. G. Genty, M. Lehtonen, H. Ludvigsen, and M. Kaivola, "Enhanced bandwidth of supercontinuum generated in microstructured fibers," Opt. Express 12, 3471 (2004).
    [CrossRef] [PubMed]
  6. K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, "Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths," Opt. Express 12, 1045 (2004).
    [CrossRef] [PubMed]
  7. T. V. Andersen, K. M. Hilligsøe, C. K. Nielsen, J. Thøgersen, K. P. Hansen, S. R. Keiding, and J. J. Larsen, "Continuous-wave wavelength conversion in a photonic crystal fiber with two zero-dispersion wavelengths," Opt. Express 12, 4113 (2004).
    [CrossRef] [PubMed]
  8. M. H. Frosz, P. Falk, and O. Bang, "The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength," Opt. Express 13, 6181 (2005).
    [CrossRef] [PubMed]
  9. P. Falk, M. H. Frosz, and O. Bang, "Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths," Opt. Express 13, 7535 (2005).
    [CrossRef] [PubMed]
  10. M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J. H. V. Price, J. R. Hayes, and D. J. Richardson, "A systematic study of supercontinuum generation at 1.06 micron in holey fibers with dispersion flattened profiles," Optical Fiber Communication Conference (OFC), OThQ5,(2006).
  11. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, San Diego, CA, USA,2001).
  12. K. J. Blow and D. Wood, "Theoretical Description of Transient Stimulated Raman Scattering in Optical Fibers," IEEE J. Quantum Electron. 25, 2665 (1989).
    [CrossRef]
  13. Simulation software ProPulse by R. Paschotta, R P Photonics Consulting GmbH, Zurich, Switzerland.
  14. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, "Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping," J. Opt. Soc. Am. B 19, 765 (2002).
    [CrossRef]
  15. T. Schreiber, T. V. Andersen, D. Schimpf, J. Limpert, and A. Tünnermann, "Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths," Opt. Express 13, 9556 (2005).
    [CrossRef] [PubMed]

2005 (4)

2004 (3)

2002 (2)

2001 (1)

A. V. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

2000 (1)

1989 (1)

K. J. Blow and D. Wood, "Theoretical Description of Transient Stimulated Raman Scattering in Optical Fibers," IEEE J. Quantum Electron. 25, 2665 (1989).
[CrossRef]

Andersen, T. V.

Bang, O.

Birks, T. A.

Blow, K. J.

K. J. Blow and D. Wood, "Theoretical Description of Transient Stimulated Raman Scattering in Optical Fibers," IEEE J. Quantum Electron. 25, 2665 (1989).
[CrossRef]

Chen, Z.

Coen, S.

Dudley, J. M.

Eggleton, B. J.

Falk, P.

Frosz, M. H.

Gapontsev, V.

Genty, G.

Grossard, N.

Hansen, K. P.

Harbold, J. M.

Herrmann, J.

A. V. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Hilligsøe, K. M.

Husakou, A. V.

A. V. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Ilday, F. Ö.

Kaivola, M.

Keiding, S.

Keiding, S. R.

Kristiansen, R.

Larsen, J. J.

Lehtonen, M.

Limpert, J.

Ludvigsen, H.

Maillotte, H.

Mølmer, K.

Nielsen, C. K.

Paulsen, H. N.

Popov, S.

Provino, L.

Ranka, J. K.

Rulkov, A.

Schimpf, D.

Schreiber, T.

Stentz, A. J.

Taylor, J.

Thøgersen, J.

Tünnermann, A.

Vyatkin, M.

Wadsworth, W. J.

Windeler, R. S.

Wise, F. W.

Wood, D.

K. J. Blow and D. Wood, "Theoretical Description of Transient Stimulated Raman Scattering in Optical Fibers," IEEE J. Quantum Electron. 25, 2665 (1989).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. J. Blow and D. Wood, "Theoretical Description of Transient Stimulated Raman Scattering in Optical Fibers," IEEE J. Quantum Electron. 25, 2665 (1989).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (7)

K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, "Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths," Opt. Express 12, 1045 (2004).
[CrossRef] [PubMed]

G. Genty, M. Lehtonen, H. Ludvigsen, and M. Kaivola, "Enhanced bandwidth of supercontinuum generated in microstructured fibers," Opt. Express 12, 3471 (2004).
[CrossRef] [PubMed]

T. V. Andersen, K. M. Hilligsøe, C. K. Nielsen, J. Thøgersen, K. P. Hansen, S. R. Keiding, and J. J. Larsen, "Continuous-wave wavelength conversion in a photonic crystal fiber with two zero-dispersion wavelengths," Opt. Express 12, 4113 (2004).
[CrossRef] [PubMed]

A. Rulkov, M. Vyatkin, S. Popov, J. Taylor, and V. Gapontsev, "High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping," Opt. Express 13, 377 (2005).
[CrossRef] [PubMed]

M. H. Frosz, P. Falk, and O. Bang, "The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength," Opt. Express 13, 6181 (2005).
[CrossRef] [PubMed]

P. Falk, M. H. Frosz, and O. Bang, "Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths," Opt. Express 13, 7535 (2005).
[CrossRef] [PubMed]

T. Schreiber, T. V. Andersen, D. Schimpf, J. Limpert, and A. Tünnermann, "Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths," Opt. Express 13, 9556 (2005).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

A. V. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Other (3)

M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J. H. V. Price, J. R. Hayes, and D. J. Richardson, "A systematic study of supercontinuum generation at 1.06 micron in holey fibers with dispersion flattened profiles," Optical Fiber Communication Conference (OFC), OThQ5,(2006).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, San Diego, CA, USA,2001).

Simulation software ProPulse by R. Paschotta, R P Photonics Consulting GmbH, Zurich, Switzerland.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(Top) Measured SC spectra for fibers A, E and F at maximum power. (Bottom) Simulated spectra for fibers A (360pJ) and E (800pJ). Note that the measurement range of the OSA used in these experiments extended from 400 nm to 1650 nm.

Fig. 2.
Fig. 2.

Calculated dispersion profiles for fibers A to E. Inset: SEM picture of fiber C.

Fig. 3.
Fig. 3.

(Left) Phase matching curves for fibers A to E. (Right) The SC bandwidth (at maximum launched power) and the phase matched range for fibers A to E.

Fig. 4.
Fig. 4.

SC spectra (10 dBm/div.) at different pulse energy level in fiber A.

Fig. 5.
Fig. 5.

SC bandwidth at different input pulse energy level for fiber A (top) and E (bottom).

Metrics