Abstract

We report the first observations of the three-dimensional morphology of cone photoreceptors in the living human retina. Images were acquired with a high-speed adaptive optics (AO) spectral-domain optical coherence tomography (SD-OCT) camera. The AO system consisted of a Shack-Hartmann wavefront sensor and bimorph mirror (AOptix) that measured and corrected the ocular and system aberrations at a closed-loop rate of 12 Hz. The bimorph mirror was positioned between the XY mechanical scanners and the subject’s eye. The SD-OCT system consisted of a superluminescent diode and a 512 pixel line scan charge-coupled device (CCD) that acquired 75,000 A-scans/s. This rate is more than two times faster than that previously reported. Retinal motion artifacts were minimized by quickly acquiring small volume images of the retina with and without AO compensation. Camera sensitivity was sufficient to detect reflections from all major retinal layers. The regular distribution of bright spots observed within C-scans at the inner segment/outer segment (IS/OS) junctions and at the posterior tips of the OS were found to be highly correlated with one another and with the expected cone spacing. No correlation was found between the posterior tips of the OS and the other retinal layers examined, including the retinal pigment epithelium.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. Puliafito, J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-81 (1991).
    [CrossRef] [PubMed]
  2. A. F. Fercher, C. K. Hitzenberger, G. Kamp, Y. Elzaiat, "Measurement of intraocular distance by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
    [CrossRef]
  3. M. , Wojtkowski, R. A. Leitgeb, A. Kowalczyk, T. Bajraszewski and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
    [CrossRef] [PubMed]
  4. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004).
    [CrossRef] [PubMed]
  5. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2421 (2004).
    [CrossRef] [PubMed]
  6. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004).
    [CrossRef] [PubMed]
  7. J. Liang, D. Williams, and D. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 11,2884-2892 (1997).
    [CrossRef]
  8. A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Optics Express 10, 405-412 (2002).
    [PubMed]
  9. N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, "Use of a microelectromechanical mirror for adaptive optics in the human eye," Opt. Lett. 27, 1537-1539 (2002).
    [CrossRef]
  10. M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J. F. Le Gargasson, and P. Lena, "Towards wide-field imaging with adaptive optics," Opt. Commun. 230, 225-238 (2004).
    [CrossRef]
  11. J. Rha, K. E. Thorn, R. S. Jonnal, J. Qu, Y. Zhang, and D. T. Miller, "Adaptive optics flood-illumination camera for high speed retinal imaging," Opt. Express (accepted).
    [PubMed]
  12. Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005).
    [CrossRef] [PubMed]
  13. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005).
    [CrossRef] [PubMed]
  14. E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal and W. Drexler, "Three-dimensional adaptive Optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
    [CrossRef] [PubMed]
  15. L. A. Riggs and J. C. Armington, J. C., "Motions of the retinal image during fixation," J. Opt. Soc. Am. A 44, 315-321 (1954).
    [CrossRef]
  16. American National Standard for the Safe Use of Lasers ANSI Z136.1. (Laser Institute of America, Orlando, FL, 2000).
  17. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comparitive Neurology 292, 497-523 (1990).
    [CrossRef]
  18. D. R. Williams, "Topography of the foveal cone mosaic in the living human eye," Vision Res. 28, 433-454 (1988).
    [CrossRef] [PubMed]
  19. D. H. Anderson and S. K. Fisher, "The relationship of primate foveal cones to the pigment epithelium," J. Ultrastructure Res. 67, 23-32 (1979).
    [CrossRef]
  20. R. H. Steinberg, I. Wood, and M. J. Hogan, "Pigment epithelial ensheathment and phagogytosis of extrafoveal cones in human retina," Philos. Trans. R. Soc. London. 277, 459-474 (1977).
    [CrossRef]
  21. E. Götzinger, M. Pircher, and C. K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography of the human retina," Opt. Express 13, 10217-10229 (2005).
    [CrossRef] [PubMed]

2005 (4)

2004 (4)

2002 (3)

A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Optics Express 10, 405-412 (2002).
[PubMed]

N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, "Use of a microelectromechanical mirror for adaptive optics in the human eye," Opt. Lett. 27, 1537-1539 (2002).
[CrossRef]

M. , Wojtkowski, R. A. Leitgeb, A. Kowalczyk, T. Bajraszewski and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

1997 (1)

J. Liang, D. Williams, and D. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 11,2884-2892 (1997).
[CrossRef]

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, Y. Elzaiat, "Measurement of intraocular distance by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. Puliafito, J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-81 (1991).
[CrossRef] [PubMed]

1990 (1)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comparitive Neurology 292, 497-523 (1990).
[CrossRef]

1988 (1)

D. R. Williams, "Topography of the foveal cone mosaic in the living human eye," Vision Res. 28, 433-454 (1988).
[CrossRef] [PubMed]

1979 (1)

D. H. Anderson and S. K. Fisher, "The relationship of primate foveal cones to the pigment epithelium," J. Ultrastructure Res. 67, 23-32 (1979).
[CrossRef]

1977 (1)

R. H. Steinberg, I. Wood, and M. J. Hogan, "Pigment epithelial ensheathment and phagogytosis of extrafoveal cones in human retina," Philos. Trans. R. Soc. London. 277, 459-474 (1977).
[CrossRef]

1954 (1)

L. A. Riggs and J. C. Armington, J. C., "Motions of the retinal image during fixation," J. Opt. Soc. Am. A 44, 315-321 (1954).
[CrossRef]

Ahnelt, P.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal and W. Drexler, "Three-dimensional adaptive Optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Anderson, D. H.

D. H. Anderson and S. K. Fisher, "The relationship of primate foveal cones to the pigment epithelium," J. Ultrastructure Res. 67, 23-32 (1979).
[CrossRef]

Armington, J. C.

L. A. Riggs and J. C. Armington, J. C., "Motions of the retinal image during fixation," J. Opt. Soc. Am. A 44, 315-321 (1954).
[CrossRef]

Artal, P.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal and W. Drexler, "Three-dimensional adaptive Optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Bajraszewski, T.

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004).
[CrossRef] [PubMed]

M. , Wojtkowski, R. A. Leitgeb, A. Kowalczyk, T. Bajraszewski and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Bierden, P.

Bouma, B. E.

Bower, B. A.

Campbell, M. C. W.

A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Optics Express 10, 405-412 (2002).
[PubMed]

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. Puliafito, J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-81 (1991).
[CrossRef] [PubMed]

Chen, L.

Chen, T. C.

Choi, S.

Curcio, C. A.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comparitive Neurology 292, 497-523 (1990).
[CrossRef]

de Boer, J. F.

Doble, N.

Donnelly, W. J.

A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Optics Express 10, 405-412 (2002).
[PubMed]

Drexler, W.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal and W. Drexler, "Three-dimensional adaptive Optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004).
[CrossRef] [PubMed]

Duker, J. S.

Elzaiat, Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, Y. Elzaiat, "Measurement of intraocular distance by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Fercher, A. F.

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004).
[CrossRef] [PubMed]

M. , Wojtkowski, R. A. Leitgeb, A. Kowalczyk, T. Bajraszewski and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, Y. Elzaiat, "Measurement of intraocular distance by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Fernández, E. J.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal and W. Drexler, "Three-dimensional adaptive Optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Fisher, S. K.

D. H. Anderson and S. K. Fisher, "The relationship of primate foveal cones to the pigment epithelium," J. Ultrastructure Res. 67, 23-32 (1979).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. Puliafito, J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-81 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2421 (2004).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. Puliafito, J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-81 (1991).
[CrossRef] [PubMed]

Gendron, E.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J. F. Le Gargasson, and P. Lena, "Towards wide-field imaging with adaptive optics," Opt. Commun. 230, 225-238 (2004).
[CrossRef]

Glanc, M.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J. F. Le Gargasson, and P. Lena, "Towards wide-field imaging with adaptive optics," Opt. Commun. 230, 225-238 (2004).
[CrossRef]

Götzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. Puliafito, J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-81 (1991).
[CrossRef] [PubMed]

Hebert, T. J.

A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Optics Express 10, 405-412 (2002).
[PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. Puliafito, J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-81 (1991).
[CrossRef] [PubMed]

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comparitive Neurology 292, 497-523 (1990).
[CrossRef]

Hermann, B.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal and W. Drexler, "Three-dimensional adaptive Optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004).
[CrossRef] [PubMed]

Hitzenberger, C. K.

E. Götzinger, M. Pircher, and C. K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography of the human retina," Opt. Express 13, 10217-10229 (2005).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, Y. Elzaiat, "Measurement of intraocular distance by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Hogan, M. J.

R. H. Steinberg, I. Wood, and M. J. Hogan, "Pigment epithelial ensheathment and phagogytosis of extrafoveal cones in human retina," Philos. Trans. R. Soc. London. 277, 459-474 (1977).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. Puliafito, J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-81 (1991).
[CrossRef] [PubMed]

Izatt, J. A.

Jones, S. M.

Jonnal, R. S.

Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005).
[CrossRef] [PubMed]

J. Rha, K. E. Thorn, R. S. Jonnal, J. Qu, Y. Zhang, and D. T. Miller, "Adaptive optics flood-illumination camera for high speed retinal imaging," Opt. Express (accepted).
[PubMed]

Kalina, R. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comparitive Neurology 292, 497-523 (1990).
[CrossRef]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, Y. Elzaiat, "Measurement of intraocular distance by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Ko, T. H.

Kowalczyk, A.

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2421 (2004).
[CrossRef] [PubMed]

M. , Wojtkowski, R. A. Leitgeb, A. Kowalczyk, T. Bajraszewski and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Lacombe, F.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J. F. Le Gargasson, and P. Lena, "Towards wide-field imaging with adaptive optics," Opt. Commun. 230, 225-238 (2004).
[CrossRef]

Lafaille, D.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J. F. Le Gargasson, and P. Lena, "Towards wide-field imaging with adaptive optics," Opt. Commun. 230, 225-238 (2004).
[CrossRef]

Laut, S.

Le, T.

Le Gargasson, J. F.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J. F. Le Gargasson, and P. Lena, "Towards wide-field imaging with adaptive optics," Opt. Commun. 230, 225-238 (2004).
[CrossRef]

Leitgeb, R.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal and W. Drexler, "Three-dimensional adaptive Optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Leitgeb, R. A.

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004).
[CrossRef] [PubMed]

M. , Wojtkowski, R. A. Leitgeb, A. Kowalczyk, T. Bajraszewski and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Lena, P.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J. F. Le Gargasson, and P. Lena, "Towards wide-field imaging with adaptive optics," Opt. Commun. 230, 225-238 (2004).
[CrossRef]

Liang, J.

J. Liang, D. Williams, and D. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 11,2884-2892 (1997).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. Puliafito, J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-81 (1991).
[CrossRef] [PubMed]

Miller, D.

J. Liang, D. Williams, and D. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 11,2884-2892 (1997).
[CrossRef]

Miller, D. T.

Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005).
[CrossRef] [PubMed]

J. Rha, K. E. Thorn, R. S. Jonnal, J. Qu, Y. Zhang, and D. T. Miller, "Adaptive optics flood-illumination camera for high speed retinal imaging," Opt. Express (accepted).
[PubMed]

Nassif, N. A.

Olivier, S.

Olivier, S. S.

Park, B. H.

Pierce, M. C.

Pircher, M.

Považay, B.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal and W. Drexler, "Three-dimensional adaptive Optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Prieto, P. M.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal and W. Drexler, "Three-dimensional adaptive Optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Puliafito, C.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. Puliafito, J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-81 (1991).
[CrossRef] [PubMed]

Qu, J.

J. Rha, K. E. Thorn, R. S. Jonnal, J. Qu, Y. Zhang, and D. T. Miller, "Adaptive optics flood-illumination camera for high speed retinal imaging," Opt. Express (accepted).
[PubMed]

Queener, H.

A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Optics Express 10, 405-412 (2002).
[PubMed]

Rha, J.

Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005).
[CrossRef] [PubMed]

J. Rha, K. E. Thorn, R. S. Jonnal, J. Qu, Y. Zhang, and D. T. Miller, "Adaptive optics flood-illumination camera for high speed retinal imaging," Opt. Express (accepted).
[PubMed]

Riggs, L. A.

L. A. Riggs and J. C. Armington, J. C., "Motions of the retinal image during fixation," J. Opt. Soc. Am. A 44, 315-321 (1954).
[CrossRef]

Romero-Borja, F.

A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Optics Express 10, 405-412 (2002).
[PubMed]

Roorda, A.

A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Optics Express 10, 405-412 (2002).
[PubMed]

Sattmann, H.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal and W. Drexler, "Three-dimensional adaptive Optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. Puliafito, J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-81 (1991).
[CrossRef] [PubMed]

Singer, B.

Sloan, K. R.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comparitive Neurology 292, 497-523 (1990).
[CrossRef]

Srinivasan, V. J.

Steinberg, R. H.

R. H. Steinberg, I. Wood, and M. J. Hogan, "Pigment epithelial ensheathment and phagogytosis of extrafoveal cones in human retina," Philos. Trans. R. Soc. London. 277, 459-474 (1977).
[CrossRef]

Stingl, A.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. Puliafito, J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-81 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. Puliafito, J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-81 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

Thorn, K. E.

J. Rha, K. E. Thorn, R. S. Jonnal, J. Qu, Y. Zhang, and D. T. Miller, "Adaptive optics flood-illumination camera for high speed retinal imaging," Opt. Express (accepted).
[PubMed]

Unterhuber, A.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal and W. Drexler, "Three-dimensional adaptive Optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004).
[CrossRef] [PubMed]

Werner, J. S.

Williams, D.

J. Liang, D. Williams, and D. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 11,2884-2892 (1997).
[CrossRef]

Williams, D. R.

Wojtkowski, M.

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2421 (2004).
[CrossRef] [PubMed]

M. , Wojtkowski, R. A. Leitgeb, A. Kowalczyk, T. Bajraszewski and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Wood, I.

R. H. Steinberg, I. Wood, and M. J. Hogan, "Pigment epithelial ensheathment and phagogytosis of extrafoveal cones in human retina," Philos. Trans. R. Soc. London. 277, 459-474 (1977).
[CrossRef]

Yoon, G.

Yun, S.

Zawadzki, R. J.

Zhang, Y.

Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005).
[CrossRef] [PubMed]

J. Rha, K. E. Thorn, R. S. Jonnal, J. Qu, Y. Zhang, and D. T. Miller, "Adaptive optics flood-illumination camera for high speed retinal imaging," Opt. Express (accepted).
[PubMed]

Zhao, M.

J. Biomed. Opt. (1)

M. , Wojtkowski, R. A. Leitgeb, A. Kowalczyk, T. Bajraszewski and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

J. Comparitive Neurology (1)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comparitive Neurology 292, 497-523 (1990).
[CrossRef]

J. Opt. Soc. Am. A (2)

L. A. Riggs and J. C. Armington, J. C., "Motions of the retinal image during fixation," J. Opt. Soc. Am. A 44, 315-321 (1954).
[CrossRef]

J. Liang, D. Williams, and D. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 11,2884-2892 (1997).
[CrossRef]

J. Ultrastructure Res. (1)

D. H. Anderson and S. K. Fisher, "The relationship of primate foveal cones to the pigment epithelium," J. Ultrastructure Res. 67, 23-32 (1979).
[CrossRef]

Opt. Commun. (2)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, Y. Elzaiat, "Measurement of intraocular distance by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J. F. Le Gargasson, and P. Lena, "Towards wide-field imaging with adaptive optics," Opt. Commun. 230, 225-238 (2004).
[CrossRef]

Opt. Express (7)

J. Rha, K. E. Thorn, R. S. Jonnal, J. Qu, Y. Zhang, and D. T. Miller, "Adaptive optics flood-illumination camera for high speed retinal imaging," Opt. Express (accepted).
[PubMed]

Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005).
[CrossRef] [PubMed]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004).
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2421 (2004).
[CrossRef] [PubMed]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, and C. K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography of the human retina," Opt. Express 13, 10217-10229 (2005).
[CrossRef] [PubMed]

Opt. Lett. (1)

Optics Express (1)

A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Optics Express 10, 405-412 (2002).
[PubMed]

Philos. Trans. R. Soc. London. (1)

R. H. Steinberg, I. Wood, and M. J. Hogan, "Pigment epithelial ensheathment and phagogytosis of extrafoveal cones in human retina," Philos. Trans. R. Soc. London. 277, 459-474 (1977).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. Puliafito, J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-81 (1991).
[CrossRef] [PubMed]

Vision Res. (2)

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal and W. Drexler, "Three-dimensional adaptive Optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

D. R. Williams, "Topography of the foveal cone mosaic in the living human eye," Vision Res. 28, 433-454 (1988).
[CrossRef] [PubMed]

Other (1)

American National Standard for the Safe Use of Lasers ANSI Z136.1. (Laser Institute of America, Orlando, FL, 2000).

Supplementary Material (2)

» Media 1: AVI (2894 KB)     
» Media 2: AVI (2445 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Layout of the AO SD-OCT retina camera. The camera consists of three channels: (1) sample channel, (2) reference channel, and (3) detection channel. The AO system is integrated into the sample channel. BS, DM, and P refer to the fiber beam splitter, AOptix deformable mirror, and planes that are conjugate to the pupil of the eye, respectively.

Fig. 2.
Fig. 2.

Predicted shape of the beam entering the eye for a range of refractive corrections by the wavefront corrector in the (a) original and (b) final AO-OCT designs. Refractive corrections are 0 (middle) and ±3 (left, right) diopters across a 6.6 mm pupil. The two designs are described in the text with the final one shown in Fig. 1.

Fig. 3.
Fig. 3.

OCT sensitivity as a function of depth in air. A drop in sensitivity of 8 dB/mm was measured.

Fig. 4.
Fig. 4.

(a) Residual wave aberrations across a 6.6 mm pupil in one subject as measured by the SHWS before and after AO compensation. Wavefront phase is represented by a gray-scale image with black and white tones depicting minimum (-1.0 µm) and maximum (1.19 µm) phase, respectively. (b) An RMS trace of the residual wave aberrations is shown for one subject before and during dynamic AO correction.

Fig. 5.
Fig. 5.

(2.8 MB) Movie presenting 3D visualization of a small patch of retina at (left) 1° and (right) 7° retinal eccentricity in one subject. Volume images were acquired with AO compensation and focus at the photoreceptor layer. The retinal volume is 38×190×495 µm (width×length×depth). Volume images were acquired within 100 ms and are displayed using an intensity log scale (2.8 MB version).

Fig. 6.
Fig. 6.

(2.4 Mb) Movie sequence of C-scans extracted from the volume image at 1° eccentricity in Fig. 5. To indicate C-scan depth, a representative B-scan (average of 3 B-scans) with a blue indicator line is also shown. The video is shown twice using (left) log and (right) linear intensity scales in order to facilitate visualization of both bright and dim retinal structures. Focus is approximately at the plane of the photoreceptors. C-scans are 38 µm×190 µm. (2.4 MB version).

Fig. 7.
Fig. 7.

C-scans extracted from several depths in AO-OCT volume images that were acquired at 2° eccentricity on (a) subject RJ (b) subject DTM. C-scans correspond to the OPL, ELM, IS/OS junction, posterior of OS, and RPE. Focus is approximately at the plane of the photoreceptors. Images are displayed using a linear intensity scale. C-scans are 38 µm×150 µm and were acquired in <80 ms.

Fig. 8.
Fig. 8.

C-scan images at the posterior tips of OS acquired in (a) one subject at 1, 2, 3, 7 degree eccentricity and (b) another subject at 1, 2, 3 degree eccentricity. C-scan images are 38×100 µm subsections of the original images and were acquired in <60 ms. Focus is approximately at the plane of the photoreceptors. Images are displayed using a linear intensity scale.

Fig. 9.
Fig. 9.

Row spacing of bright spots at the posteriors tips of OS in AO SD-OCT C-scans as a function of retinal eccentricity. Cone row spacing is also shown as estimated from histology (superior and inferior retina) and psychophysical observations of aliasing with interference fringes [17,18].

Fig. 10.
Fig. 10.

Cross correlation between C-scans at the posterior tip of OS and (a) IS/OS junction and (b) RPE in the same subject. The cross correlation was computed using the Matlab 7.0 (Mathworks, Inc.) function “normxcorr2.”

Fig. 11.
Fig. 11.

Two primary benefits of correcting ocular aberrations across a large pupil in an OCT retina camera. (a) C-scan images at the posterior tips of the OS show an increase in lateral resolution with AO. The two images are normalized to their own gray scale so as to permit better visualization of the cone photoreceptor structure. (b) The same C-scan images in (a), but adjusted to the same gray scale. Note the increased brightness with AO. Both volume images (with and without AO) were acquired at essentially the same 2° retinal eccentricity. Focus is approximately at the plane of the photoreceptors. C-scans are displayed using a linear intensity scale; volume images are displayed using a log scale.

Tables (1)

Tables Icon

Table 1 Central peak value of cross correlation between C-scans extracted at the posterior tips of the OS and retinal layers at four other depths (OPL, ELM, IS/OS junctions, and RPE). Central peak values are shown for four retinal eccentricities and two subjects. The absolute value of the cross correlation can range from zero to one.

Metrics