Abstract

We exploit an anomalous dispersion generated by a solid-core photonic bandgap fiber for dispersion compensation in an ytterbium fiber laser passively mode-locked with a semiconductor saturable absorber. The bandgap-guiding fiber, adequately compatible with standard fiber based on guiding via total internal reflection, allows for an environmentally robust all-fiber subpicosecond soliton oscillator at 1 µm.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. C. Collings, K. Bergman, S. T. Cundiff, S. Tsuda, J. N. Kutz, J. E. Cunningham, W. Y. Jan, M. Koch, and W. H. Knox, "Short cavity erbium/ytterbium fiber lasers mode-locked with a saturable Bragg reflector," IEEE J. Sel. Top. Quantum Electron. 3, 1065-1075 (1997).
    [CrossRef]
  2. F. Ö. Ilday, J. R. Buckley, H. Lim, F. W. Wise, and W. G. Clark, "Generation of 50-fs, 5-nJ pulses at 1.03 µm from a wave-breaking-free fiber laser," Opt. Lett. 28, 1365-1367 (2003).
    [CrossRef] [PubMed]
  3. L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, "Picosecond SESAM based ytterbium mode-locked fiber lasers," IEEE J. Sel. Top. Quantum Electron. 10, 129-136 (2004).
    [CrossRef]
  4. O. G. Okhotnikov, L. A. Gomes, N. Xiang, T. Jouhti, and A. B. Grudinin, "Mode-locked ytterbium fiber laser tunable in the 980-1070 -nm spectral range," Opt. Lett. 28, 1522-1524 (2003).
    [CrossRef] [PubMed]
  5. B. Barnett, L. Rahman, M. Islam, Y. Chen, P. Bhattacharya, W. Riha, K. Reddy, A. Howe, K. Stair, H. Iwamura, S. Friberg, and T. Mukai, "High-power erbium-doped fiber laser mode locked by a semiconductor saturable absorber," Opt. Lett. 20, 471-473 (1995).
    [CrossRef] [PubMed]
  6. R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror," IEEE J. Quantum Electron. 40, 893-899 (2004).
    [CrossRef]
  7. R. L. Fork, O. E. Martinez, and J. P. Gordon, "Negative dispersion using pairs of prisms," Opt. Lett. 9, 150-152 (1984).
    [CrossRef] [PubMed]
  8. E. B. Treacy, "Optical pulse compression with diffraction gratings," IEEE J. Quantum Electron. QE-5, 454-458 (1969).
    [CrossRef]
  9. H. Lim, F. Ö. Ilday, and F. W. Wise, "Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control," Opt. Express 10, 1497-1502 (2002).
    [PubMed]
  10. J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
    [CrossRef] [PubMed]
  11. D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
    [CrossRef] [PubMed]
  12. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight and P. S. J. Russell, "All-solid photonic bandgap fiber," Opt. Lett. 29, 2369-2371 (2004).
    [CrossRef] [PubMed]

2004

L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, "Picosecond SESAM based ytterbium mode-locked fiber lasers," IEEE J. Sel. Top. Quantum Electron. 10, 129-136 (2004).
[CrossRef]

R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror," IEEE J. Quantum Electron. 40, 893-899 (2004).
[CrossRef]

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight and P. S. J. Russell, "All-solid photonic bandgap fiber," Opt. Lett. 29, 2369-2371 (2004).
[CrossRef] [PubMed]

2003

J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

O. G. Okhotnikov, L. A. Gomes, N. Xiang, T. Jouhti, and A. B. Grudinin, "Mode-locked ytterbium fiber laser tunable in the 980-1070 -nm spectral range," Opt. Lett. 28, 1522-1524 (2003).
[CrossRef] [PubMed]

F. Ö. Ilday, J. R. Buckley, H. Lim, F. W. Wise, and W. G. Clark, "Generation of 50-fs, 5-nJ pulses at 1.03 µm from a wave-breaking-free fiber laser," Opt. Lett. 28, 1365-1367 (2003).
[CrossRef] [PubMed]

2002

1997

B. C. Collings, K. Bergman, S. T. Cundiff, S. Tsuda, J. N. Kutz, J. E. Cunningham, W. Y. Jan, M. Koch, and W. H. Knox, "Short cavity erbium/ytterbium fiber lasers mode-locked with a saturable Bragg reflector," IEEE J. Sel. Top. Quantum Electron. 3, 1065-1075 (1997).
[CrossRef]

1995

1984

1969

E. B. Treacy, "Optical pulse compression with diffraction gratings," IEEE J. Quantum Electron. QE-5, 454-458 (1969).
[CrossRef]

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Barnett, B.

Bergman, K.

B. C. Collings, K. Bergman, S. T. Cundiff, S. Tsuda, J. N. Kutz, J. E. Cunningham, W. Y. Jan, M. Koch, and W. H. Knox, "Short cavity erbium/ytterbium fiber lasers mode-locked with a saturable Bragg reflector," IEEE J. Sel. Top. Quantum Electron. 3, 1065-1075 (1997).
[CrossRef]

Bhattacharya, P.

Bird, D. M.

Buckley, J. R.

Chen, Y.

Clark, W. G.

Collings, B. C.

B. C. Collings, K. Bergman, S. T. Cundiff, S. Tsuda, J. N. Kutz, J. E. Cunningham, W. Y. Jan, M. Koch, and W. H. Knox, "Short cavity erbium/ytterbium fiber lasers mode-locked with a saturable Bragg reflector," IEEE J. Sel. Top. Quantum Electron. 3, 1065-1075 (1997).
[CrossRef]

Cundiff, S. T.

B. C. Collings, K. Bergman, S. T. Cundiff, S. Tsuda, J. N. Kutz, J. E. Cunningham, W. Y. Jan, M. Koch, and W. H. Knox, "Short cavity erbium/ytterbium fiber lasers mode-locked with a saturable Bragg reflector," IEEE J. Sel. Top. Quantum Electron. 3, 1065-1075 (1997).
[CrossRef]

Cunningham, J. E.

B. C. Collings, K. Bergman, S. T. Cundiff, S. Tsuda, J. N. Kutz, J. E. Cunningham, W. Y. Jan, M. Koch, and W. H. Knox, "Short cavity erbium/ytterbium fiber lasers mode-locked with a saturable Bragg reflector," IEEE J. Sel. Top. Quantum Electron. 3, 1065-1075 (1997).
[CrossRef]

Fork, R. L.

Friberg, S.

Gaeta, A. L.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Gallagher, M. T.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

George, A. K.

Gomes, L. A.

L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, "Picosecond SESAM based ytterbium mode-locked fiber lasers," IEEE J. Sel. Top. Quantum Electron. 10, 129-136 (2004).
[CrossRef]

O. G. Okhotnikov, L. A. Gomes, N. Xiang, T. Jouhti, and A. B. Grudinin, "Mode-locked ytterbium fiber laser tunable in the 980-1070 -nm spectral range," Opt. Lett. 28, 1522-1524 (2003).
[CrossRef] [PubMed]

Gordon, J. P.

Grudinin, A. B.

Hedley, T. D.

Herda, R.

R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror," IEEE J. Quantum Electron. 40, 893-899 (2004).
[CrossRef]

Howe, A.

Ilday, F. Ö.

Islam, M.

Iwamura, H.

Jan, W. Y.

B. C. Collings, K. Bergman, S. T. Cundiff, S. Tsuda, J. N. Kutz, J. E. Cunningham, W. Y. Jan, M. Koch, and W. H. Knox, "Short cavity erbium/ytterbium fiber lasers mode-locked with a saturable Bragg reflector," IEEE J. Sel. Top. Quantum Electron. 3, 1065-1075 (1997).
[CrossRef]

Jouhti, T.

L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, "Picosecond SESAM based ytterbium mode-locked fiber lasers," IEEE J. Sel. Top. Quantum Electron. 10, 129-136 (2004).
[CrossRef]

O. G. Okhotnikov, L. A. Gomes, N. Xiang, T. Jouhti, and A. B. Grudinin, "Mode-locked ytterbium fiber laser tunable in the 980-1070 -nm spectral range," Opt. Lett. 28, 1522-1524 (2003).
[CrossRef] [PubMed]

Knight, J. C.

Knox, W. H.

B. C. Collings, K. Bergman, S. T. Cundiff, S. Tsuda, J. N. Kutz, J. E. Cunningham, W. Y. Jan, M. Koch, and W. H. Knox, "Short cavity erbium/ytterbium fiber lasers mode-locked with a saturable Bragg reflector," IEEE J. Sel. Top. Quantum Electron. 3, 1065-1075 (1997).
[CrossRef]

Koch, K. W.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Koch, M.

B. C. Collings, K. Bergman, S. T. Cundiff, S. Tsuda, J. N. Kutz, J. E. Cunningham, W. Y. Jan, M. Koch, and W. H. Knox, "Short cavity erbium/ytterbium fiber lasers mode-locked with a saturable Bragg reflector," IEEE J. Sel. Top. Quantum Electron. 3, 1065-1075 (1997).
[CrossRef]

Kutz, J. N.

B. C. Collings, K. Bergman, S. T. Cundiff, S. Tsuda, J. N. Kutz, J. E. Cunningham, W. Y. Jan, M. Koch, and W. H. Knox, "Short cavity erbium/ytterbium fiber lasers mode-locked with a saturable Bragg reflector," IEEE J. Sel. Top. Quantum Electron. 3, 1065-1075 (1997).
[CrossRef]

Lim, H.

Luan, F.

Martinez, O. E.

Mukai, T.

Muller, D.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Okhotnikov, O. G.

R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror," IEEE J. Quantum Electron. 40, 893-899 (2004).
[CrossRef]

L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, "Picosecond SESAM based ytterbium mode-locked fiber lasers," IEEE J. Sel. Top. Quantum Electron. 10, 129-136 (2004).
[CrossRef]

O. G. Okhotnikov, L. A. Gomes, N. Xiang, T. Jouhti, and A. B. Grudinin, "Mode-locked ytterbium fiber laser tunable in the 980-1070 -nm spectral range," Opt. Lett. 28, 1522-1524 (2003).
[CrossRef] [PubMed]

Orsila, L.

L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, "Picosecond SESAM based ytterbium mode-locked fiber lasers," IEEE J. Sel. Top. Quantum Electron. 10, 129-136 (2004).
[CrossRef]

Ouzounov, D. G.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Pearce, G. J.

Rahman, L.

Reddy, K.

Riha, W.

Russell, P. S. J.

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Stair, K.

Thomas, M. G.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Treacy, E. B.

E. B. Treacy, "Optical pulse compression with diffraction gratings," IEEE J. Quantum Electron. QE-5, 454-458 (1969).
[CrossRef]

Tsuda, S.

B. C. Collings, K. Bergman, S. T. Cundiff, S. Tsuda, J. N. Kutz, J. E. Cunningham, W. Y. Jan, M. Koch, and W. H. Knox, "Short cavity erbium/ytterbium fiber lasers mode-locked with a saturable Bragg reflector," IEEE J. Sel. Top. Quantum Electron. 3, 1065-1075 (1997).
[CrossRef]

Venkataraman, N.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Wise, F. W.

Xiang, N.

IEEE J. Quantum Electron.

R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror," IEEE J. Quantum Electron. 40, 893-899 (2004).
[CrossRef]

E. B. Treacy, "Optical pulse compression with diffraction gratings," IEEE J. Quantum Electron. QE-5, 454-458 (1969).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

B. C. Collings, K. Bergman, S. T. Cundiff, S. Tsuda, J. N. Kutz, J. E. Cunningham, W. Y. Jan, M. Koch, and W. H. Knox, "Short cavity erbium/ytterbium fiber lasers mode-locked with a saturable Bragg reflector," IEEE J. Sel. Top. Quantum Electron. 3, 1065-1075 (1997).
[CrossRef]

L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, "Picosecond SESAM based ytterbium mode-locked fiber lasers," IEEE J. Sel. Top. Quantum Electron. 10, 129-136 (2004).
[CrossRef]

Nature

J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Science

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Laser setup with SC-PBG fiber for cavity dispersion compensation. HR mirror-high reflectivity mirror.

Fig. 2.
Fig. 2.

Transmission (black curve) and dispersion (red curve) of the SC-PBG fiber used for dispersion compensation. The inset shows the cross-sectional view of the fiber.

Fig. 3.
Fig. 3.

The intensity autocorrelation traces (right) and corresponding spectra (left) obtained for tunable mode-locked operation. Plots (a)-(d) correspond to net normal cavity dispersion, (e)-(h) to total anomalous cavity dispersion.

Fig. 4.
Fig. 4.

Mode-locked pulse spectra obtained with 0.55-m long ytterbium fiber. The total cavity dispersion calculated from the soliton sidebands equals-0.13 ps2 at 1040 nm and-0.52 ps2 at 1055 nm.

Fig. 5.
Fig. 5.

Interferometric autocorrelations and spectra for cavities with different lengths of ytterbium-doped fiber: (a), (b) 1.15 m, (c), (d) 1.7 m and (e), (f) 1.7 m. Pulse durations and corresponding optical pulse bandwidths are shown.

Metrics