Abstract

A sharp 90 degree bend in a dual mode trench waveguide is analyzed by means of the MMP method. Through evolutionary strategy optimization, different configurations with low reflection, low radiation, low mode conversion, and therefore high transmission for the dominant mode are obtained. Three different types of bends are analyzed and compared: mirror-based structures, resonator-based structures, and structures with a small photonic crystal in the bend area. The local photonic crystal helps not only suppressing radiation but also provides solutions with fewer fabrication tolerance problems.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. F. Taylor, “Losses at corner bends in dielectric waveguides,” Appl. Opt.16 (1977).
    [Crossref] [PubMed]
  2. T. Shiina, K. Shiraishi, and S. Kawakami, “Waveguide-bend configuration with low-loss characteristics,” Opt. Lett. 11, 736–738 (1986).
    [Crossref] [PubMed]
  3. H.-B. Lin, J.-Y. Su, P.-K. Wei, and W.-S. Wang, “Design and application of very low-loss abrupt bends in optical waveguides,” IEEE J. Quantum Electron. 30, 2827–2835 (1994).
    [Crossref]
  4. http://alphard.ethz.ch/hafner/MaX/max1.htm.
  5. J. Smajic, C. Hafner, and D. Erni, “Optimization of photonic crystal structures,” J. Opt. Soc. Am. A 21, 2223–2232 (2004).
    [Crossref]
  6. C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol.17 (1999).
    [Crossref]
  7. R. L. Espinola, R. U. Ahmad, F. Pizzuto, M. J. Steel, and R. M. Osgood, “A study of high-index-contrast 90 degree waveguide bend structures,” Opt. Express 8, 517–528 (2001).
    [Crossref] [PubMed]
  8. G. P. Nordin, S. Kim, J. Cai, and J. Jiang, “Hybrid integration of conventional waveguide and photonic crystal structures,” Opt. Express10, (2002).
    [PubMed]
  9. http://wwwhome.math.utwente.nl/~hammer/eims.html.
  10. C. Xudong, C. Hafner, and R. Vahldieck, “Design of ultra-compact metallo-dielectric photonic crystal filters,” Opt. Express13, (2005).
    [Crossref] [PubMed]
  11. A. Melloni, F. Carniel, R. Costa, and M. Martinelli, “Determination of bend mode characteristics in dielectric waveguides,” J. Lightwave Technol.19, (2001).
    [Crossref]
  12. A. Melloni, P. Monguzzi, R. Costa, and M. Martinelli, “Design of curved waveguides: the matched bend,” J. Opt. Soc. Am. A20, (2003).
    [Crossref]
  13. D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell. Syst. Tech. J. 48, 3187–3215 (1969).
  14. J. Merle Elson, “Propagation in planar waveguides and the effects of wall roughness,” Opt. Express 9, 461–475 (2001).
    [Crossref]
  15. A. Hakansson, J. Sanchez-Dehesa, and L. Sanchis, “Inverse design of Photonic Crystal devices,” IEEE Trans. Sel. Areas in communications 23, 365–1371 (2005).

2005 (1)

A. Hakansson, J. Sanchez-Dehesa, and L. Sanchis, “Inverse design of Photonic Crystal devices,” IEEE Trans. Sel. Areas in communications 23, 365–1371 (2005).

2004 (1)

2001 (2)

1994 (1)

H.-B. Lin, J.-Y. Su, P.-K. Wei, and W.-S. Wang, “Design and application of very low-loss abrupt bends in optical waveguides,” IEEE J. Quantum Electron. 30, 2827–2835 (1994).
[Crossref]

1986 (1)

1969 (1)

D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell. Syst. Tech. J. 48, 3187–3215 (1969).

Ahmad, R. U.

Cai, J.

G. P. Nordin, S. Kim, J. Cai, and J. Jiang, “Hybrid integration of conventional waveguide and photonic crystal structures,” Opt. Express10, (2002).
[PubMed]

Carniel, F.

A. Melloni, F. Carniel, R. Costa, and M. Martinelli, “Determination of bend mode characteristics in dielectric waveguides,” J. Lightwave Technol.19, (2001).
[Crossref]

Costa, R.

A. Melloni, F. Carniel, R. Costa, and M. Martinelli, “Determination of bend mode characteristics in dielectric waveguides,” J. Lightwave Technol.19, (2001).
[Crossref]

A. Melloni, P. Monguzzi, R. Costa, and M. Martinelli, “Design of curved waveguides: the matched bend,” J. Opt. Soc. Am. A20, (2003).
[Crossref]

Erni, D.

Espinola, R. L.

Fan, S.

C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol.17 (1999).
[Crossref]

Hafner, C.

J. Smajic, C. Hafner, and D. Erni, “Optimization of photonic crystal structures,” J. Opt. Soc. Am. A 21, 2223–2232 (2004).
[Crossref]

C. Xudong, C. Hafner, and R. Vahldieck, “Design of ultra-compact metallo-dielectric photonic crystal filters,” Opt. Express13, (2005).
[Crossref] [PubMed]

Hakansson, A.

A. Hakansson, J. Sanchez-Dehesa, and L. Sanchis, “Inverse design of Photonic Crystal devices,” IEEE Trans. Sel. Areas in communications 23, 365–1371 (2005).

Haus, H. A.

C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol.17 (1999).
[Crossref]

Jiang, J.

G. P. Nordin, S. Kim, J. Cai, and J. Jiang, “Hybrid integration of conventional waveguide and photonic crystal structures,” Opt. Express10, (2002).
[PubMed]

Joannopoulos, J. D.

C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol.17 (1999).
[Crossref]

Johnson, S. G.

C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol.17 (1999).
[Crossref]

Kawakami, S.

Kim, S.

G. P. Nordin, S. Kim, J. Cai, and J. Jiang, “Hybrid integration of conventional waveguide and photonic crystal structures,” Opt. Express10, (2002).
[PubMed]

Lin, H.-B.

H.-B. Lin, J.-Y. Su, P.-K. Wei, and W.-S. Wang, “Design and application of very low-loss abrupt bends in optical waveguides,” IEEE J. Quantum Electron. 30, 2827–2835 (1994).
[Crossref]

Manolatou, C.

C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol.17 (1999).
[Crossref]

Marcuse, D.

D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell. Syst. Tech. J. 48, 3187–3215 (1969).

Martinelli, M.

A. Melloni, P. Monguzzi, R. Costa, and M. Martinelli, “Design of curved waveguides: the matched bend,” J. Opt. Soc. Am. A20, (2003).
[Crossref]

A. Melloni, F. Carniel, R. Costa, and M. Martinelli, “Determination of bend mode characteristics in dielectric waveguides,” J. Lightwave Technol.19, (2001).
[Crossref]

Melloni, A.

A. Melloni, P. Monguzzi, R. Costa, and M. Martinelli, “Design of curved waveguides: the matched bend,” J. Opt. Soc. Am. A20, (2003).
[Crossref]

A. Melloni, F. Carniel, R. Costa, and M. Martinelli, “Determination of bend mode characteristics in dielectric waveguides,” J. Lightwave Technol.19, (2001).
[Crossref]

Merle Elson, J.

Monguzzi, P.

A. Melloni, P. Monguzzi, R. Costa, and M. Martinelli, “Design of curved waveguides: the matched bend,” J. Opt. Soc. Am. A20, (2003).
[Crossref]

Nordin, G. P.

G. P. Nordin, S. Kim, J. Cai, and J. Jiang, “Hybrid integration of conventional waveguide and photonic crystal structures,” Opt. Express10, (2002).
[PubMed]

Osgood, R. M.

Pizzuto, F.

Sanchez-Dehesa, J.

A. Hakansson, J. Sanchez-Dehesa, and L. Sanchis, “Inverse design of Photonic Crystal devices,” IEEE Trans. Sel. Areas in communications 23, 365–1371 (2005).

Sanchis, L.

A. Hakansson, J. Sanchez-Dehesa, and L. Sanchis, “Inverse design of Photonic Crystal devices,” IEEE Trans. Sel. Areas in communications 23, 365–1371 (2005).

Shiina, T.

Shiraishi, K.

Smajic, J.

Steel, M. J.

Su, J.-Y.

H.-B. Lin, J.-Y. Su, P.-K. Wei, and W.-S. Wang, “Design and application of very low-loss abrupt bends in optical waveguides,” IEEE J. Quantum Electron. 30, 2827–2835 (1994).
[Crossref]

Taylor, H. F.

H. F. Taylor, “Losses at corner bends in dielectric waveguides,” Appl. Opt.16 (1977).
[Crossref] [PubMed]

Vahldieck, R.

C. Xudong, C. Hafner, and R. Vahldieck, “Design of ultra-compact metallo-dielectric photonic crystal filters,” Opt. Express13, (2005).
[Crossref] [PubMed]

Villeneuve, P. R.

C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol.17 (1999).
[Crossref]

Wang, W.-S.

H.-B. Lin, J.-Y. Su, P.-K. Wei, and W.-S. Wang, “Design and application of very low-loss abrupt bends in optical waveguides,” IEEE J. Quantum Electron. 30, 2827–2835 (1994).
[Crossref]

Wei, P.-K.

H.-B. Lin, J.-Y. Su, P.-K. Wei, and W.-S. Wang, “Design and application of very low-loss abrupt bends in optical waveguides,” IEEE J. Quantum Electron. 30, 2827–2835 (1994).
[Crossref]

Xudong, C.

C. Xudong, C. Hafner, and R. Vahldieck, “Design of ultra-compact metallo-dielectric photonic crystal filters,” Opt. Express13, (2005).
[Crossref] [PubMed]

Bell. Syst. Tech. J. (1)

D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell. Syst. Tech. J. 48, 3187–3215 (1969).

IEEE J. Quantum Electron. (1)

H.-B. Lin, J.-Y. Su, P.-K. Wei, and W.-S. Wang, “Design and application of very low-loss abrupt bends in optical waveguides,” IEEE J. Quantum Electron. 30, 2827–2835 (1994).
[Crossref]

IEEE Trans. Sel. Areas in communications (1)

A. Hakansson, J. Sanchez-Dehesa, and L. Sanchis, “Inverse design of Photonic Crystal devices,” IEEE Trans. Sel. Areas in communications 23, 365–1371 (2005).

J. Opt. Soc. Am. A (1)

Opt. Express (2)

Opt. Lett. (1)

Other (8)

H. F. Taylor, “Losses at corner bends in dielectric waveguides,” Appl. Opt.16 (1977).
[Crossref] [PubMed]

http://alphard.ethz.ch/hafner/MaX/max1.htm.

G. P. Nordin, S. Kim, J. Cai, and J. Jiang, “Hybrid integration of conventional waveguide and photonic crystal structures,” Opt. Express10, (2002).
[PubMed]

http://wwwhome.math.utwente.nl/~hammer/eims.html.

C. Xudong, C. Hafner, and R. Vahldieck, “Design of ultra-compact metallo-dielectric photonic crystal filters,” Opt. Express13, (2005).
[Crossref] [PubMed]

A. Melloni, F. Carniel, R. Costa, and M. Martinelli, “Determination of bend mode characteristics in dielectric waveguides,” J. Lightwave Technol.19, (2001).
[Crossref]

A. Melloni, P. Monguzzi, R. Costa, and M. Martinelli, “Design of curved waveguides: the matched bend,” J. Opt. Soc. Am. A20, (2003).
[Crossref]

C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol.17 (1999).
[Crossref]

Supplementary Material (2)

» Media 1: GIF (1999 KB)     
» Media 2: GIF (2231 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the 3D structure (left-hand side) and the corresponding 2D effective index structure (right-hand side, inset: Poynting vector at 1.55 µm).

Fig. 2.
Fig. 2.

(a) “Mirror” structure for the first optimization; (b) “Resonator” structure for the second optimization; (c) (1.95 MB)Animated results of the first optimization; (d) (2.17 MB)Animated results of the second optimization.

Fig. 3.
Fig. 3.

Some selected results from animated Fig.2(c) and Fig.2(d) with transmission above 90%. The global optima exhibit transmission above 98%. The coordinates of all points for all of the structures are shown in inset of figures, corner radius r=1e-7 is used in MMP calculation.

Fig. 4.
Fig. 4.

(a) Schematic of Bend structure shown in Fig. 3(a) after PhC rods are put on the bend corners; (b) Poynting vector field for the structure shown in Fig. 4(a). At λ=1.55 µm one has T1=0.9896, R1=4.06e-4, T2=1.937e-4, R2=1.15e-3. (c) Rod A moved from (-1e-7, 1e-7) to (2e-7,-2e-7). At λ=1.55µm one now has T1=0.9969, R1=2.48e-4, T2=6.355e-6, R2=1.509e-4.

Fig. 5.
Fig. 5.

Corner displacement .vs. transmission at 1.55µm. (a) for scheme 1; (b) for scheme 2 with (black curve) and without (red curves) the local PhCs.

Tables (1)

Tables Icon

Table 1. Comparison of the transmission of the fundamental mode for a bend structure (shown in Fig.4(a)) without and with local PhCs after perturbation was introduced.

Metrics