Abstract

In this paper we present a new method to achieve quantitative phase contrast imaging in Digital Holographic Microscopy (DHM) that allows to compensate for phase aberrations and image distortion by recording of a single reference hologram. We demonstrate that in particular cases in which the studied specimen does not have abrupt edges, the specimen’s hologram itself can be used as reference hologram. We show that image distortion and phase aberrations introduced by a lens ball used as microscope objective are completely suppressed with our method. Finally the concept of self-conjugated reference hologram is applied on a biological sample (Trypanosoma Brucei) to maintain a spatial phase noise level under 3 degrees.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Cuche, P. Marquet, and C. Depeursinge, "Spatial filtering for zero-order and twin-image elimination in digital off-axis holography," Appl. Opt. 39, 4070-4075 (2000).
    [CrossRef]
  2. E. Cuche, P. Marquet, and C. Depeursinge, "Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms," Appl. Opt. 38, 6994-7001 (1999).
    [CrossRef]
  3. G. Pedrini, S. Schedin, and H. J. Tiziani, "Aberration compensation in digital holographic reconstruction of microscopic objects," J. Mod. Opt. 48, 1035-1041 (2001).
  4. P. Ferraro, S. D. Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, "Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging," Appl. Opt. 42, 1938-1946 (2003).
    [CrossRef] [PubMed]
  5. A. Stadelmaier and J. H. Massig, "Compensation of lens aberrations in digital holography," Opt. Lett. 25, 1630-1632 (2000).
    [CrossRef]
  6. S. Grilli, P. Ferraro, S. D. Nicola, A. Finizio, G. Pierattini, and R. Meucci, "Whole optical wavefields reconstruction by digital holography," Opt. Express 9, 294-302 (2001).
    [CrossRef] [PubMed]
  7. S. de Nicola, A. Finizio, G. Pierattini, P. Ferraro, and D. Alfieri, "Angular spectrum method with correction of anamorphism for numerical reconstruction of digital holograms on tilted planes," Opt. Express 13, 9935-9940 (2005).
    [CrossRef] [PubMed]
  8. T. Colomb, E. Cuche, F. Charriere, J. Kuhn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, "Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation," Appl. Opt. 45, 851-863 (2006).
    [CrossRef] [PubMed]
  9. T. Colomb, F. Montfort, J. Kuhn, N. Aspert, E. Cuche, A. Marian, F. Charriere, S. Bourquin, and C. Depeursinge, "A numerical parametric lens for shifting, magnification and complete aberration compensation in digital holographic microscopy," J. Opt. Soc. Am. A (submitted) (2006).
    [CrossRef]
  10. J. Upatnieks, A. V. Lugt, and E. Leith, "Correction of lens aberrations by means of holograms," Appl. Opt. 5, 589-593 (1966).
    [CrossRef] [PubMed]
  11. J. Ward, D. Auth, and F. P. Carlson, "Lens Aberration Correction by Holography," Appl. Opt. 10, 896-900 (1971).
    [CrossRef] [PubMed]
  12. C. J. Mann, L. Yu, C.-M. Lo, and M. K. Kim, "High-resolution quantitative phase-contrast microscopy by digital holography," Opt. Express 13, 8693 - 8698 (2005).
    [CrossRef] [PubMed]

2006 (2)

T. Colomb, F. Montfort, J. Kuhn, N. Aspert, E. Cuche, A. Marian, F. Charriere, S. Bourquin, and C. Depeursinge, "A numerical parametric lens for shifting, magnification and complete aberration compensation in digital holographic microscopy," J. Opt. Soc. Am. A (submitted) (2006).
[CrossRef]

T. Colomb, E. Cuche, F. Charriere, J. Kuhn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, "Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation," Appl. Opt. 45, 851-863 (2006).
[CrossRef] [PubMed]

2005 (2)

2003 (1)

2001 (2)

G. Pedrini, S. Schedin, and H. J. Tiziani, "Aberration compensation in digital holographic reconstruction of microscopic objects," J. Mod. Opt. 48, 1035-1041 (2001).

S. Grilli, P. Ferraro, S. D. Nicola, A. Finizio, G. Pierattini, and R. Meucci, "Whole optical wavefields reconstruction by digital holography," Opt. Express 9, 294-302 (2001).
[CrossRef] [PubMed]

2000 (2)

1999 (1)

1971 (1)

1966 (1)

Alfieri, D.

Aspert, N.

T. Colomb, F. Montfort, J. Kuhn, N. Aspert, E. Cuche, A. Marian, F. Charriere, S. Bourquin, and C. Depeursinge, "A numerical parametric lens for shifting, magnification and complete aberration compensation in digital holographic microscopy," J. Opt. Soc. Am. A (submitted) (2006).
[CrossRef]

T. Colomb, E. Cuche, F. Charriere, J. Kuhn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, "Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation," Appl. Opt. 45, 851-863 (2006).
[CrossRef] [PubMed]

Auth, D.

Carlson, F. P.

Charriere, F.

Colomb, T.

T. Colomb, E. Cuche, F. Charriere, J. Kuhn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, "Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation," Appl. Opt. 45, 851-863 (2006).
[CrossRef] [PubMed]

T. Colomb, F. Montfort, J. Kuhn, N. Aspert, E. Cuche, A. Marian, F. Charriere, S. Bourquin, and C. Depeursinge, "A numerical parametric lens for shifting, magnification and complete aberration compensation in digital holographic microscopy," J. Opt. Soc. Am. A (submitted) (2006).
[CrossRef]

Coppola, G.

Cuche, E.

de Nicola, S.

Depeursinge, C.

Ferraro, P.

Finizio, A.

Grilli, S.

Kim, M. K.

Kuhn, J.

Leith, E.

Lo, C.-M.

Lugt, A. V.

Magro, C.

Mann, C. J.

Marquet, P.

Massig, J. H.

Meucci, R.

Montfort, F.

Nicola, S. D.

Pedrini, G.

G. Pedrini, S. Schedin, and H. J. Tiziani, "Aberration compensation in digital holographic reconstruction of microscopic objects," J. Mod. Opt. 48, 1035-1041 (2001).

Pierattini, G.

Schedin, S.

G. Pedrini, S. Schedin, and H. J. Tiziani, "Aberration compensation in digital holographic reconstruction of microscopic objects," J. Mod. Opt. 48, 1035-1041 (2001).

Stadelmaier, A.

Tiziani, H. J.

G. Pedrini, S. Schedin, and H. J. Tiziani, "Aberration compensation in digital holographic reconstruction of microscopic objects," J. Mod. Opt. 48, 1035-1041 (2001).

Upatnieks, J.

Ward, J.

Yu, L.

Appl. Opt. (6)

J. Mod. Opt. (1)

G. Pedrini, S. Schedin, and H. J. Tiziani, "Aberration compensation in digital holographic reconstruction of microscopic objects," J. Mod. Opt. 48, 1035-1041 (2001).

J. Opt. Soc. Am. A (1)

T. Colomb, F. Montfort, J. Kuhn, N. Aspert, E. Cuche, A. Marian, F. Charriere, S. Bourquin, and C. Depeursinge, "A numerical parametric lens for shifting, magnification and complete aberration compensation in digital holographic microscopy," J. Opt. Soc. Am. A (submitted) (2006).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Supplementary Material (1)

» Media 1: MOV (2433 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Digital holographic microscope, (a) transmission and (b) reflection setups. O object wave; R reference wave; BS beam splitter; M1, M2 mirrors; MO microscope objective, RL lens in the reference wave, OC condenser in the object wave, FL field lens and LB lens ball.(c) Detail of the off-axis geometry.

Fig. 2.
Fig. 2.

256×256 pixels area of 512×512 pixels holograms and spectra with lens ball as MO, the zero-order term is already filtered out; (a,b) are respectively the hologram with and without the USAF test target; (c,d) are the corresponding spectra. The white lines show the spectrum area of the virtual image that is retained after manual spatial filtering.

Fig. 3.
Fig. 3.

The first row represents the phase in the hologram plane, the second and third one the amplitude and phase reconstructions in image plane. (a) correction of the tilt in hologram plane done by centering the filtered spectrum and the aberrations are compensated in image plane using the fitting procedure detailed in Ref. [8]; (b) aberrations compensation with ΓRCHH .

Fig. 4.
Fig. 4.

(a) Hologram of Trypanosoma Brucei; (b) spectrum and detail of virtual image frequencies on the upper right; the green circle (80 pixels radius) delimits the frequency for the sample hologram and the small white one (10 pixels radius) the filtering for Self-RCH. The position of the circles’ center is computed automatically by detecting the maximum of amplitude spectrum.

Fig. 5.
Fig. 5.

(a) Phase reconstruction of Trypanosoma Brucei by Self-RCH method; (b) Schematic of the Trypanosoma Brucei. [Media 1]

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I H ( k , l ) = ( R + O ) ( R + O ) * = R 2 + O 2 + R * O + R O * ,
R ( x , y ) = R · exp [ i ( k x x + k y y ) ] · exp [ i W R ( x , y ) ] ,
O 0 ( x , y ) = O 0 ( x , y ) · exp [ i W O 0 ( x , y ) ] ,
O ( x , y ) = O ( x , y ) exp [ i φ ( x , y ) ] · exp [ i W O 0 ( x , y ) ] ,
Ψ CF ( m , n ) = A · DFT 1 { DFT [ R D ( k , l ) I H ( k , l ) ] · exp [ i π λ d ( ν k 2 + ν l 2 ) ] } .
R D = exp [ i ( k x k Δ x + k y l Δ y ) ] .
Ψ CF ( m , n ) = A · DFT 1 { DFT [ Γ RCH H ( k , l ) I H F ( k , l ) ] · exp [ i π λ d ( ν k 2 + ν l 2 ) ] } ,
I H F = R * O = R O exp [ i ( k x x + k y y ) ] exp [ i ( φ + W O 0 W R ) ] .
I H R , F = R * O 0 = R O 0 exp [ i ( k x x + k y y ) ] exp [ i ( W O 0 W R ) ] .
Γ RCH H ( m , n ) = exp [ i arg ( I H R , F * ) ] = exp [ i ( k x x + k y y ) ] exp [ i ( W O 0 W R ) ] .
Γ RCH H ( m , n ) · I H F = R O exp [ i φ ( x , y ) ] .

Metrics