Abstract

We propose a novel optical delay interferometer (ODI) with an optically controllable phase shifter. The proposed interferometer is implemented by using a phase shifted fiber Bragg grating and an Yb3+/Al3+ co-doped optical fiber. The phase of the delayed optical signal is linearly controlled by adjusting the induced pumping power of a laser diode at 976 nm. Polarization dependent loss, polarization dependent center wavelength shift and temperature induced center wavelength shift of the ODI are 0.044 dB, 6 pm, and 9.8 pm/°C, respectively.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Dong, G. Zhu, Q. Wang, H. Sun, N.K. Dutta, J. Jaques, and A.B. Piccirilli, "Multiwavelength fiber ring laser source based on a delayed interferometer," IEEE Photon. Technol. Lett. 17, 303-305 (2005).
    [CrossRef]
  2. D. Stowe and Hsu Tsung-Yuan, "Demodulation of interferometric sensors using a fiber-optic passive quadrature demodulator," J. Lightwave Technol. 1, 519-523 (1983).
    [CrossRef]
  3. E. Swanson, J. Livas, and R. Bondurant, "High sensitivity optically preamplified direct detection DPSK receiver with active delay line stabilization," IEEE Photon. Technol. Lett. 6, 263-265 (1994).
    [CrossRef]
  4. M. Hanawa, T. Fujimoto, and K. Nakamura, "Simple clock extraction method from NRZ signals by π-phase shifted fiber Bragg gratings," OECC 2005, Tech. Dig. 8D2-5, 820-821, (2005).
  5. J. W. Arkwright, P. Elango, T. W. Whitbread, and G. R. Atkins, "Nonlinear phase changes at 1310 nm and 1545 nm observed far from resonance in diode pumped ytterbium doped fiber," IEEE Photon. Technol. Lett,  8, 408-410, (1996).
    [CrossRef]
  6. P. Elango, J. W. Arkwright, P. L. Chu, and G. R. Atkins, "Low-power all-optical broad-band switching device using ytterbium-doped fiber," IEEE Photon. Technol. Lett. 8, 1032-1034 (1996).
    [CrossRef]
  7. M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, "Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: A review," Opt. Fiber Technol. 3, 44-64 (1997).
    [CrossRef]
  8. Y. H. Kim, N. S. Kim, Y. Chung, U. Paek, and W.-T. Han, "All-optical switching application based on optical nonlinearity of Yb3+ doped aluminosilicate glass fiber with a long-period fiber gratings pair," Opt. Express 12,651-656 (2004),
    [CrossRef] [PubMed]
  9. Y. H. Kim, U. Paek, and W.-T. Han, "All-optical 2 × 2 switching with two independent Yb3+-doped nonlinear optical fibers with a long-period fiber grating pair," Appl. Opt. 44, 3051-3057 (2005).
    [CrossRef] [PubMed]
  10. M. Janos, J. Arkwright, and Z. Brodzeli, "Low power nonlinear response of Yb3+-doped optical fiber Bragg gratings," Electron. Lett. 33, 2150-2151 (1997).
    [CrossRef]
  11. Y. Lai, W. Zhang, L. Zhang, J. Williams, and I. Bennion, "Optically tunable fiber grating transmission filters, " Opt. Lett. 28, 2446-2448 (2003).
    [CrossRef] [PubMed]
  12. Y. H. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W.-T. Han, "Resonant optical nonlinearity measurement of Yb3+/Al3+ codoped optical fibers by use of a long-period fiber grating pair," Opt. Lett. 27, 580-582 (2002).
    [CrossRef]
  13. M. K. Davis, M. J. F. Digonnet, and R. H. Pantell, "Thermal effects in doped fibers," J. Lightwave Technol. 16, 1013-1023 (1998).
    [CrossRef]
  14. T. Iwashima, A. Inoue, M. Shigematsu, M. Nishimura, and Y. Hattori, "Temperature compensation technique for fibre Bragg gratings using liquid crystalline polymer tubes," Electron. Lett. 33, 417-419 (1997).
    [CrossRef]

2005 (2)

H. Dong, G. Zhu, Q. Wang, H. Sun, N.K. Dutta, J. Jaques, and A.B. Piccirilli, "Multiwavelength fiber ring laser source based on a delayed interferometer," IEEE Photon. Technol. Lett. 17, 303-305 (2005).
[CrossRef]

Y. H. Kim, U. Paek, and W.-T. Han, "All-optical 2 × 2 switching with two independent Yb3+-doped nonlinear optical fibers with a long-period fiber grating pair," Appl. Opt. 44, 3051-3057 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

2002 (1)

1998 (1)

1997 (3)

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, "Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: A review," Opt. Fiber Technol. 3, 44-64 (1997).
[CrossRef]

M. Janos, J. Arkwright, and Z. Brodzeli, "Low power nonlinear response of Yb3+-doped optical fiber Bragg gratings," Electron. Lett. 33, 2150-2151 (1997).
[CrossRef]

T. Iwashima, A. Inoue, M. Shigematsu, M. Nishimura, and Y. Hattori, "Temperature compensation technique for fibre Bragg gratings using liquid crystalline polymer tubes," Electron. Lett. 33, 417-419 (1997).
[CrossRef]

1996 (2)

J. W. Arkwright, P. Elango, T. W. Whitbread, and G. R. Atkins, "Nonlinear phase changes at 1310 nm and 1545 nm observed far from resonance in diode pumped ytterbium doped fiber," IEEE Photon. Technol. Lett,  8, 408-410, (1996).
[CrossRef]

P. Elango, J. W. Arkwright, P. L. Chu, and G. R. Atkins, "Low-power all-optical broad-band switching device using ytterbium-doped fiber," IEEE Photon. Technol. Lett. 8, 1032-1034 (1996).
[CrossRef]

1994 (1)

E. Swanson, J. Livas, and R. Bondurant, "High sensitivity optically preamplified direct detection DPSK receiver with active delay line stabilization," IEEE Photon. Technol. Lett. 6, 263-265 (1994).
[CrossRef]

1983 (1)

D. Stowe and Hsu Tsung-Yuan, "Demodulation of interferometric sensors using a fiber-optic passive quadrature demodulator," J. Lightwave Technol. 1, 519-523 (1983).
[CrossRef]

Arkwright, J.

M. Janos, J. Arkwright, and Z. Brodzeli, "Low power nonlinear response of Yb3+-doped optical fiber Bragg gratings," Electron. Lett. 33, 2150-2151 (1997).
[CrossRef]

Arkwright, J. W.

P. Elango, J. W. Arkwright, P. L. Chu, and G. R. Atkins, "Low-power all-optical broad-band switching device using ytterbium-doped fiber," IEEE Photon. Technol. Lett. 8, 1032-1034 (1996).
[CrossRef]

J. W. Arkwright, P. Elango, T. W. Whitbread, and G. R. Atkins, "Nonlinear phase changes at 1310 nm and 1545 nm observed far from resonance in diode pumped ytterbium doped fiber," IEEE Photon. Technol. Lett,  8, 408-410, (1996).
[CrossRef]

Atkins, G. R.

J. W. Arkwright, P. Elango, T. W. Whitbread, and G. R. Atkins, "Nonlinear phase changes at 1310 nm and 1545 nm observed far from resonance in diode pumped ytterbium doped fiber," IEEE Photon. Technol. Lett,  8, 408-410, (1996).
[CrossRef]

P. Elango, J. W. Arkwright, P. L. Chu, and G. R. Atkins, "Low-power all-optical broad-band switching device using ytterbium-doped fiber," IEEE Photon. Technol. Lett. 8, 1032-1034 (1996).
[CrossRef]

Bennion, I.

Bondurant, R.

E. Swanson, J. Livas, and R. Bondurant, "High sensitivity optically preamplified direct detection DPSK receiver with active delay line stabilization," IEEE Photon. Technol. Lett. 6, 263-265 (1994).
[CrossRef]

Brodzeli, Z.

M. Janos, J. Arkwright, and Z. Brodzeli, "Low power nonlinear response of Yb3+-doped optical fiber Bragg gratings," Electron. Lett. 33, 2150-2151 (1997).
[CrossRef]

Chu, P. L.

P. Elango, J. W. Arkwright, P. L. Chu, and G. R. Atkins, "Low-power all-optical broad-band switching device using ytterbium-doped fiber," IEEE Photon. Technol. Lett. 8, 1032-1034 (1996).
[CrossRef]

Chung, Y.

Davis, M. K.

Digonnet, M. J. F.

M. K. Davis, M. J. F. Digonnet, and R. H. Pantell, "Thermal effects in doped fibers," J. Lightwave Technol. 16, 1013-1023 (1998).
[CrossRef]

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, "Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: A review," Opt. Fiber Technol. 3, 44-64 (1997).
[CrossRef]

Dong, H.

H. Dong, G. Zhu, Q. Wang, H. Sun, N.K. Dutta, J. Jaques, and A.B. Piccirilli, "Multiwavelength fiber ring laser source based on a delayed interferometer," IEEE Photon. Technol. Lett. 17, 303-305 (2005).
[CrossRef]

Dutta, N.K.

H. Dong, G. Zhu, Q. Wang, H. Sun, N.K. Dutta, J. Jaques, and A.B. Piccirilli, "Multiwavelength fiber ring laser source based on a delayed interferometer," IEEE Photon. Technol. Lett. 17, 303-305 (2005).
[CrossRef]

Elango, P.

J. W. Arkwright, P. Elango, T. W. Whitbread, and G. R. Atkins, "Nonlinear phase changes at 1310 nm and 1545 nm observed far from resonance in diode pumped ytterbium doped fiber," IEEE Photon. Technol. Lett,  8, 408-410, (1996).
[CrossRef]

P. Elango, J. W. Arkwright, P. L. Chu, and G. R. Atkins, "Low-power all-optical broad-band switching device using ytterbium-doped fiber," IEEE Photon. Technol. Lett. 8, 1032-1034 (1996).
[CrossRef]

Han, W.-T.

Hattori, Y.

T. Iwashima, A. Inoue, M. Shigematsu, M. Nishimura, and Y. Hattori, "Temperature compensation technique for fibre Bragg gratings using liquid crystalline polymer tubes," Electron. Lett. 33, 417-419 (1997).
[CrossRef]

Inoue, A.

T. Iwashima, A. Inoue, M. Shigematsu, M. Nishimura, and Y. Hattori, "Temperature compensation technique for fibre Bragg gratings using liquid crystalline polymer tubes," Electron. Lett. 33, 417-419 (1997).
[CrossRef]

Iwashima, T.

T. Iwashima, A. Inoue, M. Shigematsu, M. Nishimura, and Y. Hattori, "Temperature compensation technique for fibre Bragg gratings using liquid crystalline polymer tubes," Electron. Lett. 33, 417-419 (1997).
[CrossRef]

Janos, M.

M. Janos, J. Arkwright, and Z. Brodzeli, "Low power nonlinear response of Yb3+-doped optical fiber Bragg gratings," Electron. Lett. 33, 2150-2151 (1997).
[CrossRef]

Jaques, J.

H. Dong, G. Zhu, Q. Wang, H. Sun, N.K. Dutta, J. Jaques, and A.B. Piccirilli, "Multiwavelength fiber ring laser source based on a delayed interferometer," IEEE Photon. Technol. Lett. 17, 303-305 (2005).
[CrossRef]

Kim, N. S.

Kim, Y. H.

Lai, Y.

Lee, B. H.

Livas, J.

E. Swanson, J. Livas, and R. Bondurant, "High sensitivity optically preamplified direct detection DPSK receiver with active delay line stabilization," IEEE Photon. Technol. Lett. 6, 263-265 (1994).
[CrossRef]

Nishimura, M.

T. Iwashima, A. Inoue, M. Shigematsu, M. Nishimura, and Y. Hattori, "Temperature compensation technique for fibre Bragg gratings using liquid crystalline polymer tubes," Electron. Lett. 33, 417-419 (1997).
[CrossRef]

Paek, U.

Paek, U. C.

Pantell, R. H.

M. K. Davis, M. J. F. Digonnet, and R. H. Pantell, "Thermal effects in doped fibers," J. Lightwave Technol. 16, 1013-1023 (1998).
[CrossRef]

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, "Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: A review," Opt. Fiber Technol. 3, 44-64 (1997).
[CrossRef]

Piccirilli, A.B.

H. Dong, G. Zhu, Q. Wang, H. Sun, N.K. Dutta, J. Jaques, and A.B. Piccirilli, "Multiwavelength fiber ring laser source based on a delayed interferometer," IEEE Photon. Technol. Lett. 17, 303-305 (2005).
[CrossRef]

Sadowski, R. W.

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, "Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: A review," Opt. Fiber Technol. 3, 44-64 (1997).
[CrossRef]

Shaw, H. J.

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, "Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: A review," Opt. Fiber Technol. 3, 44-64 (1997).
[CrossRef]

Shigematsu, M.

T. Iwashima, A. Inoue, M. Shigematsu, M. Nishimura, and Y. Hattori, "Temperature compensation technique for fibre Bragg gratings using liquid crystalline polymer tubes," Electron. Lett. 33, 417-419 (1997).
[CrossRef]

Stowe, D.

D. Stowe and Hsu Tsung-Yuan, "Demodulation of interferometric sensors using a fiber-optic passive quadrature demodulator," J. Lightwave Technol. 1, 519-523 (1983).
[CrossRef]

Sun, H.

H. Dong, G. Zhu, Q. Wang, H. Sun, N.K. Dutta, J. Jaques, and A.B. Piccirilli, "Multiwavelength fiber ring laser source based on a delayed interferometer," IEEE Photon. Technol. Lett. 17, 303-305 (2005).
[CrossRef]

Swanson, E.

E. Swanson, J. Livas, and R. Bondurant, "High sensitivity optically preamplified direct detection DPSK receiver with active delay line stabilization," IEEE Photon. Technol. Lett. 6, 263-265 (1994).
[CrossRef]

Tsung-Yuan, Hsu

D. Stowe and Hsu Tsung-Yuan, "Demodulation of interferometric sensors using a fiber-optic passive quadrature demodulator," J. Lightwave Technol. 1, 519-523 (1983).
[CrossRef]

Wang, Q.

H. Dong, G. Zhu, Q. Wang, H. Sun, N.K. Dutta, J. Jaques, and A.B. Piccirilli, "Multiwavelength fiber ring laser source based on a delayed interferometer," IEEE Photon. Technol. Lett. 17, 303-305 (2005).
[CrossRef]

Whitbread, T. W.

J. W. Arkwright, P. Elango, T. W. Whitbread, and G. R. Atkins, "Nonlinear phase changes at 1310 nm and 1545 nm observed far from resonance in diode pumped ytterbium doped fiber," IEEE Photon. Technol. Lett,  8, 408-410, (1996).
[CrossRef]

Williams, J.

Zhang, L.

Zhang, W.

Zhu, G.

H. Dong, G. Zhu, Q. Wang, H. Sun, N.K. Dutta, J. Jaques, and A.B. Piccirilli, "Multiwavelength fiber ring laser source based on a delayed interferometer," IEEE Photon. Technol. Lett. 17, 303-305 (2005).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (2)

M. Janos, J. Arkwright, and Z. Brodzeli, "Low power nonlinear response of Yb3+-doped optical fiber Bragg gratings," Electron. Lett. 33, 2150-2151 (1997).
[CrossRef]

T. Iwashima, A. Inoue, M. Shigematsu, M. Nishimura, and Y. Hattori, "Temperature compensation technique for fibre Bragg gratings using liquid crystalline polymer tubes," Electron. Lett. 33, 417-419 (1997).
[CrossRef]

IEEE Photon. Technol. Lett (1)

J. W. Arkwright, P. Elango, T. W. Whitbread, and G. R. Atkins, "Nonlinear phase changes at 1310 nm and 1545 nm observed far from resonance in diode pumped ytterbium doped fiber," IEEE Photon. Technol. Lett,  8, 408-410, (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

P. Elango, J. W. Arkwright, P. L. Chu, and G. R. Atkins, "Low-power all-optical broad-band switching device using ytterbium-doped fiber," IEEE Photon. Technol. Lett. 8, 1032-1034 (1996).
[CrossRef]

H. Dong, G. Zhu, Q. Wang, H. Sun, N.K. Dutta, J. Jaques, and A.B. Piccirilli, "Multiwavelength fiber ring laser source based on a delayed interferometer," IEEE Photon. Technol. Lett. 17, 303-305 (2005).
[CrossRef]

E. Swanson, J. Livas, and R. Bondurant, "High sensitivity optically preamplified direct detection DPSK receiver with active delay line stabilization," IEEE Photon. Technol. Lett. 6, 263-265 (1994).
[CrossRef]

J. Lightwave Technol. (2)

D. Stowe and Hsu Tsung-Yuan, "Demodulation of interferometric sensors using a fiber-optic passive quadrature demodulator," J. Lightwave Technol. 1, 519-523 (1983).
[CrossRef]

M. K. Davis, M. J. F. Digonnet, and R. H. Pantell, "Thermal effects in doped fibers," J. Lightwave Technol. 16, 1013-1023 (1998).
[CrossRef]

Opt. Express (1)

Opt. Fiber Technol. (1)

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, "Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: A review," Opt. Fiber Technol. 3, 44-64 (1997).
[CrossRef]

Opt. Lett. (2)

Other (1)

M. Hanawa, T. Fujimoto, and K. Nakamura, "Simple clock extraction method from NRZ signals by π-phase shifted fiber Bragg gratings," OECC 2005, Tech. Dig. 8D2-5, 820-821, (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Working principle and experimental setup. BLS: broadband light source, CIR: optical circulator, WDM: 980/1550-nm wavelength-division multiplexer, Pumping light: 976 nm laser diode, FBG: fiber Bragg grating, YDF: Yb3+/Al3+ co-doped optical fiber, ISO: optical isolator, OSA: optical spectrum analyzer.

Fig. 2.
Fig. 2.

Theoretically calculated and experimentally measured optical spectra of the ODI.

Fig. 3.
Fig. 3.

(a) Pump-induced phase shift of the ODI (inset: enlarged optical spectra for pumping power of 0 and 6.9 mW), (b) measured optical spectra for pumping power of 0 and 6.9 mW.

Fig. 4.
Fig. 4.

Measured polarization dependent loss and polarization dependent center wavelength shift.

Fig. 5.
Fig. 5.

(a) Measured optical spectra of the ODI to see its temperature effect (inset: center wavelength shift measured as a function of the temperature), (b) compared phase shift efficiency for the ODI with and without the TEC temperature control.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ t = 2 ( ( n 0 + δ n 1 ) L 1 + n 3 L 3 + n 0 ( L 2 L 3 ) ) c
Δ ϕ ( λ ) = 2 π ( ( c Δ t ) mod λ ) λ
= 2 ( ( 2 ( ( n 0 + δ n 1 ) L 1 + n 3 L 3 + n 0 ( L 2 L 3 ) ) ) mod λ ) λ ,
R 1 = R 2 ( 1 R 1 ) 2 ,
Δ ϕ = 2 π S Δ λ ,

Metrics