Abstract

High-uniform nanowires with diameters down to 50 nm are directly taper-drawn from bulk glasses. Typical loss of these wires goes down to 0.1 dB/mm for single-mode operation. Favorable photonic properties such as high index for tight optical confinement in tellurite glass nanowires and photoluminescence for active devices in doped fluoride and phosphate glass nanowires are observed. Supporting high-index tellurite nanowires with solid substrates (such as silica glass and MgF2 crystal) and assembling low-loss microcoupler with these wires are also demonstrated. Photonic nanowires demonstrated in this work may open up vast opportunities for making versatile building blocks for future micro- and nanoscale photonic circuits and components.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
    [CrossRef] [PubMed]
  2. P. Domachuk and B. J. Eggleton, "Photonics: Shrinking optical fibres," Nature Mater. 3, 85-86 (2004).
    [CrossRef]
  3. M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, "Nanoribbon waveguides for subwavelength photonics integration," Science 305, 1269-1273 (2004).
    [CrossRef] [PubMed]
  4. C. J. Barrelet, A. B. Greytak, and C. M. Lieber, "Nanowire photonic circuit elements," Nano Lett. 4, 1981-1985 (2004).
    [CrossRef]
  5. L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices," Nano Lett. 5, 259-262 (2005).
    [CrossRef] [PubMed]
  6. D. J. Sirbuly, M. Law, P. Pauzauskle, H. Yan, A. V. Maslov, K. Knutsen, C. Z. Ning, R. J. Saykally, and P. D. Yang, "Optical routing and sensing with nanowire assemblies," Proc. Natl. Acad. Sci. U.S.A. 102, 7800-7805 (2005).
    [CrossRef] [PubMed]
  7. C. Lopez, "Small colorful ribbons for nanoscience," Small 1, 378-380 (2005).
    [CrossRef]
  8. G. Brambilla, V. Finazzi, and D. J. Richardson, "Ultra-low-loss optical fiber nanotapers," Opt. Express 12, 2258-2263 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2258.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2258.</a>
    [CrossRef] [PubMed]
  9. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, "Supercontinuum generation in submicron fibre waveguides," Opt. Express 12, 2864-2869 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2864.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2864.</a>
    [CrossRef] [PubMed]
  10. J. Jackle and K. Kawasaki, "Intrinsic roughness of glass surfaces," J. Phys.: Condens. Matter 7, 4351-4358 (1995).
    [CrossRef]
  11. E. Radlein and G. H. Frischat, "Atomic force microscopy as a tool to correlate nanostructure to properties of glasses," J. Non-Cryst. Solids 222, 69-82 (1997).
  12. L. Tong, J. Lou, Z. Ye, G. T. Svacha, and E. Mazur, "Self-modulated taper drawing of silica nanowires," Nanotechnology 16, 1445-1448 (2005).
    [CrossRef]
  13. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, 1983).
  14. L. Tong, J. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025.</a>
    [CrossRef] [PubMed]
  15. M. Sumetsky, "Optical fiber microcoil resonator," Opt. Express 12, 2303-2316 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2303">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2303</a>
    [CrossRef] [PubMed]
  16. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, "Optical microfiber loop resonator," Appl. Phys. Lett. 2005, 86, 161108
  17. M. Sumetsky, "Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation," Opt. Express 13, 4331-4340 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-4331.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-4331.</a>
    [CrossRef] [PubMed]
  18. Y. K. Lizé, E. C. Mägi, V. G. Ta'eed, J. A. Bolger, P. Steinvurzel, and B. J. Eggleton, "Microstructured optical fiber photonic wires with subwavelength core diameter," Opt. Express 12, 3209-3217 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3209.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3209.</a>
    [CrossRef] [PubMed]
  19. M. Sumetsky, Y. Dulashko, and A. Hale, "Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer," Opt. Express 12, 3521-3531 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3521.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3521.</a>
    [CrossRef] [PubMed]
  20. E. C. Mägi, H. C. Nguyen, and B. J. Eggleton, "Air-hole collapse and mode transitions in microstructured fiber photonic wires," Opt. Express 13, 453-459 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-453.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-453.</a>
    [CrossRef] [PubMed]
  21. Brambilla, E. Koizumi, X. Feng, and D. J. Richardson, "Compound-glass optical nanowires," Electron. Lett. 41, 400-402 (2005).
    [CrossRef]
  22. R. L. Espinola, R. U. Ahmad, F. Pizzuto, M. J. Steel, and R. M. Osgood, "A study of high-index-contrast 90 degree waveguide bend structures," Opt. Express 8, 517-528 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-9-517.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-9-517.</a>
    [CrossRef] [PubMed]
  23. H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw Hill, New York, 1989).
  24. R. G. Hunsperger, Integrated Optics (Springer-Verlag, New York, 2002).
  25. G. Kakarantzas, T. E. Dimmick, T. A. Birks, R. Le Roux, and P. S. Rusell, "Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers," Opt. Lett. 26, 1137-1139 (2001).
    [CrossRef]
  26. T. Izawa and S. Sudo, Optical fiber: Materials and fabrication (Kluwer Academic Publishers, Dordrecht, 1987
  27. M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University Press, Cambridge, 2000).
    [CrossRef]
  28. K. Hirao, T. Mitsuyu, J. Si, and J. Qiu, Active Glasses for Photonic Devices: Photoinduced Structures and Their Applications (Springer-Verlag, New York, 2001).

Appl. Phys. Lett.

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, "Optical microfiber loop resonator," Appl. Phys. Lett. 2005, 86, 161108

Electron. Lett.

Brambilla, E. Koizumi, X. Feng, and D. J. Richardson, "Compound-glass optical nanowires," Electron. Lett. 41, 400-402 (2005).
[CrossRef]

J. Non-Cryst. Solids

E. Radlein and G. H. Frischat, "Atomic force microscopy as a tool to correlate nanostructure to properties of glasses," J. Non-Cryst. Solids 222, 69-82 (1997).

J. Phys.: Condens. Matter

J. Jackle and K. Kawasaki, "Intrinsic roughness of glass surfaces," J. Phys.: Condens. Matter 7, 4351-4358 (1995).
[CrossRef]

Nano Lett.

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, "Nanowire photonic circuit elements," Nano Lett. 4, 1981-1985 (2004).
[CrossRef]

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices," Nano Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

Nanotechnology

L. Tong, J. Lou, Z. Ye, G. T. Svacha, and E. Mazur, "Self-modulated taper drawing of silica nanowires," Nanotechnology 16, 1445-1448 (2005).
[CrossRef]

Nature

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Nature Mater

P. Domachuk and B. J. Eggleton, "Photonics: Shrinking optical fibres," Nature Mater. 3, 85-86 (2004).
[CrossRef]

Opt. Express

G. Brambilla, V. Finazzi, and D. J. Richardson, "Ultra-low-loss optical fiber nanotapers," Opt. Express 12, 2258-2263 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2258.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2258.</a>
[CrossRef] [PubMed]

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, "Supercontinuum generation in submicron fibre waveguides," Opt. Express 12, 2864-2869 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2864.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2864.</a>
[CrossRef] [PubMed]

L. Tong, J. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025.</a>
[CrossRef] [PubMed]

M. Sumetsky, "Optical fiber microcoil resonator," Opt. Express 12, 2303-2316 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2303">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2303</a>
[CrossRef] [PubMed]

M. Sumetsky, "Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation," Opt. Express 13, 4331-4340 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-4331.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-4331.</a>
[CrossRef] [PubMed]

Y. K. Lizé, E. C. Mägi, V. G. Ta'eed, J. A. Bolger, P. Steinvurzel, and B. J. Eggleton, "Microstructured optical fiber photonic wires with subwavelength core diameter," Opt. Express 12, 3209-3217 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3209.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3209.</a>
[CrossRef] [PubMed]

M. Sumetsky, Y. Dulashko, and A. Hale, "Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer," Opt. Express 12, 3521-3531 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3521.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3521.</a>
[CrossRef] [PubMed]

E. C. Mägi, H. C. Nguyen, and B. J. Eggleton, "Air-hole collapse and mode transitions in microstructured fiber photonic wires," Opt. Express 13, 453-459 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-453.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-453.</a>
[CrossRef] [PubMed]

R. L. Espinola, R. U. Ahmad, F. Pizzuto, M. J. Steel, and R. M. Osgood, "A study of high-index-contrast 90 degree waveguide bend structures," Opt. Express 8, 517-528 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-9-517.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-9-517.</a>
[CrossRef] [PubMed]

Opt. Lett.

Proc. Natl. Acad. Sci.

D. J. Sirbuly, M. Law, P. Pauzauskle, H. Yan, A. V. Maslov, K. Knutsen, C. Z. Ning, R. J. Saykally, and P. D. Yang, "Optical routing and sensing with nanowire assemblies," Proc. Natl. Acad. Sci. U.S.A. 102, 7800-7805 (2005).
[CrossRef] [PubMed]

Science

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, "Nanoribbon waveguides for subwavelength photonics integration," Science 305, 1269-1273 (2004).
[CrossRef] [PubMed]

Small

C. Lopez, "Small colorful ribbons for nanoscience," Small 1, 378-380 (2005).
[CrossRef]

Other

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, 1983).

T. Izawa and S. Sudo, Optical fiber: Materials and fabrication (Kluwer Academic Publishers, Dordrecht, 1987

M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University Press, Cambridge, 2000).
[CrossRef]

K. Hirao, T. Mitsuyu, J. Si, and J. Qiu, Active Glasses for Photonic Devices: Photoinduced Structures and Their Applications (Springer-Verlag, New York, 2001).

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw Hill, New York, 1989).

R. G. Hunsperger, Integrated Optics (Springer-Verlag, New York, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram illustrating the direct draw of nanowires from bulk glasses. (1) A glass is moved towards a sapphire fiber heated by a CO2 laser or flame. (2) The fiber end is immersed into the glass through local melting. (3) A portion of molten glass is left on the end of the fiber when the glass is withdrawn. (4) A second sapphire fiber is brought into contact with the molten-glass-coated end of the first sapphire fiber. (5) The heating power is reduced and the second sapphire fiber is withdrawn. (6) A nanowire is formed at the freestanding side of the taper drawn wire.

Fig. 2.
Fig. 2.

Electron microscopic characterizations of as-drawn glass nanowires. (a) SEM image of a 100-nm-diameter tellurite glass nanowire. (b) SEM image of an elastically bent 320-nm-diameter silicate glass nanowire. (c) SEM image of the cross section of a 400-nm-diameter tellurite glass nanowire. (d) SEM image of a spiral plastic bend of an 80-nm-diameter phosphate glass nanowire. (e) SEM image of a 170-nm-diameter tellurite glass nanowire with sharp plastic bends. (f) TEM examination of the sidewall of a 210-nm-diameter phosphate glass nanowire.

Fig. 3.
Fig. 3.

Launching light into a single nanowire. (a) Calculated propagation constants for glass nanowires with refractive indices of 1.46 (silica), 1.48 (fluoride), 1.54 (phosphate), 1.89 (germinate) and 2.02 (tellurite) respectively. A circle marked on each curve locates single-mode cut-off diameter of the nanowire. (b) Schematic diagram of launching light into a single nanowire by evanescent coupling.

Fig. 4.
Fig. 4.

Optical investigation of glass nanowires. The white arrow in (b), (c) and (f) indicates the direction of light propagation. (a) Measured loss of freestanding phosphate, silicate, tellurite, and MgF2-supported tellurite glass nanowires. (b) Optical micrograph of a 260-nm-diameter tellurite glass nanowire guiding 633-nm-wavelength light on the surface of a MgF2 crystal. (c) Photoluminescence image of a 320-nm-diameter 0.1 mol% Er-doped ZBLAN nanowire excited by a 975-nm-wavelength light coming from the nanotaper on the left-hand side. The up-conversion luminescence (green light) is clearly visible. A second nanotaper at the right-hand side picks up the luminescence for spectral measurement with results shown in (d). (e) Emission spectrum of a 510-nm-diameter Er and Yb co-doped phosphate glass nanowire excited at 975-nm wavelength. (f) Optical micrograph of an optical coupler assembled using two tellurite glass nanowires (350 and 450 nm in diameter respectively) on the surface of a silicate glass. The coupler splits the 633-nm-wavelength light equally.

Metrics