Abstract

A powerful analytical approach is followed to study light transmission through subwavelength holes drilled in thick perfect-conductor films, showing that full transmission (100%) is attainable in arrays of arbitrarily narrow holes as compared to the film thickness. The interplay between resonances localized in individual holes and lattice resonances originating in the array periodicity reveals new mechanisms of transmission enhancement and suppression. In particular, localized resonances obtained by filling the holes with high-index-of-refraction material are examined and experimentally observed through large enhancement in the transmission of individual holes.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163 (1944).
    [CrossRef]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667 (1998).
    [CrossRef]
  3. C. C. Chen, "Diffraction of electromagnetic waves by a conducting screen perforated periodically with circular holes," IEEE Trans. Microwave Theory Tech. 19, 475 (1971).
    [CrossRef]
  4. R. C. McPhedran et al., in Electromagnetic Theory of Gratings, edited by R. Petit, (Springer-Verlag, Berlin, 1980), p. 227.
  5. J. Gómez-Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, "Enhanced transmission of thz radiation through subwavelength holes," Phys. Rev. B 68, 201306(R) (2003).
    [CrossRef]
  6. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114 (2001).
    [CrossRef] [PubMed]
  7. M. M. J. Treacy, "Dynamical diffraction in metallic optical gratings," Appl. Phys. Lett. 75, 606 (1999).
    [CrossRef]
  8. M. M. J. Treacy, "Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings," Phys. Rev. B 66, 195105 (2002).
    [CrossRef]
  9. F. J. García de Abajo, "Light transmission through a single cylindrical hole in a metallic film," Opt. Express 10, 1475 (2002).
    [PubMed]
  10. R. E. Collin and W. H. Eggimann, "Dynamic interaction fields in a two-dimensional lattice," IRE Trans. Microwave Theory Tech. 10, 110 (1961).
  11. W. H. Eggimann and R. E. Collin, "Electromagnetic diffraction by a planar array of circular disks," IRE Trans. Microwave Theory Tech. 10, 528 (1962).
    [CrossRef]
  12. S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801 (2001).
    [CrossRef] [PubMed]
  13. F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, "Full transmission through perfect-conductor subwavelength hole arrays," Phys. Rev. E 72, 016608 (2005).
    [CrossRef]
  14. A. Roberts, "Electromagnetic theory of diffraction by a circular aperture in a thick, perfectly conducting screen," J. Opt. Soc. Am. A 4, 1970 (1987).
    [CrossRef]
  15. F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005).
    [CrossRef] [PubMed]
  16. U. Fano, "Effects of configuration interaction on intensities and phase shifts," Phys. Rev. 124, 1866 (1961).
    [CrossRef]
  17. M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, "Role of wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes," Phys. Rev. B 67, 085415 (2003).
    [CrossRef]
  18. F. Marquier, J.-J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, "Resonant transmission through a metallic film due to coupled modes," Opt. Express 13, 70 (2005).
    [CrossRef] [PubMed]
  19. J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847 (2004).
    [CrossRef] [PubMed]
  20. F. J. García de Abajo and J. J. Sáenz, "Electromagnetic surface modes in structured perfect-conductor surfaces," Phys. Rev. Lett. 95, 233901 (2005).
    [CrossRef]
  21. D. Maystre, in Electromagnetic Theory of Gratings, edited by R. Petit, (Springer-Verlag, Berlin, 1980), p. 63.

Appl. Phys. Lett.

M. M. J. Treacy, "Dynamical diffraction in metallic optical gratings," Appl. Phys. Lett. 75, 606 (1999).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

C. C. Chen, "Diffraction of electromagnetic waves by a conducting screen perforated periodically with circular holes," IEEE Trans. Microwave Theory Tech. 19, 475 (1971).
[CrossRef]

IRE Trans. Microwave Theory Tech.

R. E. Collin and W. H. Eggimann, "Dynamic interaction fields in a two-dimensional lattice," IRE Trans. Microwave Theory Tech. 10, 110 (1961).

W. H. Eggimann and R. E. Collin, "Electromagnetic diffraction by a planar array of circular disks," IRE Trans. Microwave Theory Tech. 10, 528 (1962).
[CrossRef]

J. Opt. Soc. Am. A

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667 (1998).
[CrossRef]

Opt. Express

Phys. Rev.

U. Fano, "Effects of configuration interaction on intensities and phase shifts," Phys. Rev. 124, 1866 (1961).
[CrossRef]

H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163 (1944).
[CrossRef]

Phys. Rev. B

M. M. J. Treacy, "Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings," Phys. Rev. B 66, 195105 (2002).
[CrossRef]

J. Gómez-Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, "Enhanced transmission of thz radiation through subwavelength holes," Phys. Rev. B 68, 201306(R) (2003).
[CrossRef]

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, "Role of wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes," Phys. Rev. B 67, 085415 (2003).
[CrossRef]

Phys. Rev. E

F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, "Full transmission through perfect-conductor subwavelength hole arrays," Phys. Rev. E 72, 016608 (2005).
[CrossRef]

Phys. Rev. Lett.

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801 (2001).
[CrossRef] [PubMed]

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114 (2001).
[CrossRef] [PubMed]

F. J. García de Abajo and J. J. Sáenz, "Electromagnetic surface modes in structured perfect-conductor surfaces," Phys. Rev. Lett. 95, 233901 (2005).
[CrossRef]

Science

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847 (2004).
[CrossRef] [PubMed]

Other

D. Maystre, in Electromagnetic Theory of Gratings, edited by R. Petit, (Springer-Verlag, Berlin, 1980), p. 63.

R. C. McPhedran et al., in Electromagnetic Theory of Gratings, edited by R. Petit, (Springer-Verlag, Berlin, 1980), p. 227.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) The field scattered by a subwavelength hole drilled in a perfect-conductor film in response to external electric (E 0) and magnetic (H 0) fields is equivalent (at a large distance compared to the radius a) to that of effective electric (p) and magnetic (m) dipoles, which allow defining polarizabilities (α E and α M , respectively) both on the same side as the external fields (α v ) and on the opposite side (α´ v ). Only the perpendicular component of the electric field and the parallel component of the magnetic field induce dipoles. (b)- (c) Real part of the hole response functions g± v for ε = μ = 1.

Fig. 2.
Fig. 2.

(a) Light transmittance through a circular hole drilled in a perfect-conductor film and filled with dielectric material for different values of the permittivity ε (see labels). The transmitted power is normalized to the incoming flux times the hole area. The ratio of the film thickness to the hole radius is 0.1. The left inset shows the transmission for ε = 50 in log scale. (b) Ratio of transmission for ε = 10.2 dielectric filling and ε = 1 (air) under the same conditions as in (a): theory (solid curve) vs experiment (symbols). The transmission through an infinite ε = 10.2 dielectric of the same thickness is shown as a dashed curve for comparison (dashed and solid curves approach each other in the high-frequency limit).

Fig. 3.
Fig. 3.

Lattice sum Gz [Eq. (2)] for a square lattice of period d as a function of parallel momentum k and wavelength.

Fig. 4.
Fig. 4.

Zeroth order light transmittance through square arrays of circular holes drilled in perfect-conductor films as a function of parallel momentum k and wavelength λ. The ratio of the hole radius to the lattice spacing is taken as a/d = 0.2. Different values of the film thickness t and the dielectric constant inside the holes ε are considered, as shown by labels. Both p-polarized (H parallel to the film) and s-polarized (E parallel to the film) incident light are examined.

Fig. 5.
Fig. 5.

Normal-incidence transmittance (top), lattice sums and hole response functions (middle), and hole polarizability [bottom; see Fig. 1(a)] under the same conditions as in Fig. 4(j) (a/d = 0.2, t/a = 0.1, ε = 100).

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Im { g v ± } = Im { 1 α v ± α ' v } = 2 k 3 3 ,
P = α E ( E z ext + G z P Hm ) + α ' E ( G z P ' Hm ' )
P ' = α ' E ( E z ext + G z P Hm ) + α E ( G z P ' Hm ' )
m = α M ( H y ext + G y m Hp ) + α ' M ( G y m ' Hp ' )
m ' = α ' M ( H y ext + G y m Hp ) + α M ( G y m ' + Hp ' ) ,
G j = R 0 e i k x ( k 2 + j j ) e i kR R
H = i k R 0 e i k x x e i kR R .
p ± p ' = 2 [ ( g M ± G y ) k k + H ] Δ ±
m ± m ' = 2 [ ( g E ± G z ) + H k k ] Δ ±
Δ ± = ( g E ± G z ) ( g M ± G y ) H 2 .
E trans ( r 1 ) = [ ( p ' ( k 2 + 1 z 1 ) ikm ' y ̂ × 1 ] e i k r 1 r r 1 r
= [ ( p ' ( k 2 + 1 z 1 ) ikm ' y ̂ × 1 ] d 2 k ' i 2 π k ' z e ik ' ( r 1 r )
= d 2 k ' i 2 π k ' z e ik ' ( r 1 r ) [ ( k ' z x ̂ k ' x z ̂ ) km ' ( k ' x k ' z x ̂ + k ' y k ' z y ̂ k ' 2 z ̂ ) p ' ] ,
E trans ( r 1 ) = 2 πi A k z e ik r 1 ( k z x ̂ k z ̂ ) ( km ' k p ' ) .
T = ( 2 π k z A ) 2 1 g M + G x 1 g M G x 2
= 1 1 + iA 2 π k z Re { g M + G x } 1 1 + iA 2 π k z Re { g M G x } 2 .
G j 1 ( k + 2 πn d ) 2 + ( 2 πl d ) 2 k 2 .
1 + ( A 2 π k z ) 2 Re { g M + G x } Re { g M G x } = 0
A 2 π k z g M + g M > 1 ,

Metrics