Abstract

We demonstrate a rapid scanning high-resolution THz spectrometer capable of acquiring THz field transients with 1 ns duration without mechanical delay line. The THz spectrometer is based on two 1-GHz Ti:sapphire femtosecond lasers which are linked with a fixed repetition rate difference in order to perform high-speed asynchronous optical sampling. One laser drives a high-efficiency large-area GaAs based THz emitter, the other laser is used for electro-optic detection of the emitted THz-field. At a scan rate of 9 kHz a time resolution of 230 fs is accomplished. High-resolution spectra from 50 GHz up to 3 THz are obtained and water absorption lines with a width of 11 GHz are observed. The use of femtosecond lasers with 1 GHz repetition rate is essential to obtain rapid scanning and high time-resolution at the same time.

© 2006 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. D. Mittleman (ed.), Sensing with THz radiation (Springer, Heidelberg, 2002) and references therein.
  2. C. Janke, M. Först, M. Nagel, H. Kurz, and A. Bartels, "Asynchronous optical sampling for high-speed characterization of integrated resonant THz sensors," Opt. Lett. 30, 1405-1407 (2005).
  3. T. Yasui, E. Saneyoshi, and T. Araki, "Asynchronous optical sampling THz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition," Appl. Phys. Lett. 87, 061101 (2005).
    [CrossRef]
  4. P.A. Elzinga, F.E. Lytle, Y. Jian, G.B. King, and N.M. Laurendeau, "A pump/probe method for fast analysis of visible spectral signatures utilizing asynchronous optical sampling," Appl. Opt. 26 4303 (1987).
  5. F. Keilmann, C. Gohle, and R. Holzwarth, "Time-domain mid-infrared frequency-comb spectrometer," Opt. Lett. 29 1542-1544 (2004).
    [CrossRef]
  6. F.C. DeLucia, "Noise, detectors, and submillimeter-terahertz system performance in nonambient environments," J. Opt. Soc. Am. B 21 1273-1279 (2004).
    [CrossRef]
  7. D.W. van der Weide, J. Murakowski, and F. Keilmann, "Gas-absorption spectroscopy with electronic terahertz techniques," IEEE Trans. Microwave Theory Tech. 48 740-743 (2000).
  8. A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Köhler, "Femtosecond time-resolved optical pump-probe spectroscopy at kHz-scan-rates over ns-time-delays without mechanical delay line," Appl. Phys. Lett. submitted (2005).
  9. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, "High-intensity THz radiation from a microstructured large-area photoconductor," Appl. Phys. Lett. 86 121114 (2004).
    [CrossRef]
  10. Q. Wu and X.-C. Zhang, "Ultrafast electro-optic field sensors," Appl. Phys. Lett. 68 1604-1606 (1996).
    [CrossRef]
  11. R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, "Generation and field resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz," Appl. Phys. Lett. 76 3191-3193 (2000).
    [CrossRef]
  12. H.J. Bakker, G.C. Cho, H. Kurz, Q. Wu, and X.-C. Zhang, "Distortion of THz pulses in electro-optic sampling," J. Opt. Soc. Am. B 15 1795-1801 (1998).
  13. P. Planken, N. Nienhuys, H.J. Bakker, and W.T. Wenckebach, "Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe," J. Opt. Soc. Am. B 18 313-317 (2001).
  14. D.E. Burch, "Absorption of infrared radiant energy by CO2 and H2O. III. Absorption of H2O between 0.5 and 36 cm-1 (278 μm - 2 cm)," J. Opt. Soc. Am. 58 1383-1394 (1968).
  15. J.M. Flaud, C. Camy-Peyret, and R.A. Toth, Water vapor line parameters from microwave to medium infrared (Pergamon, Oxford, 1981).
  16. M. van Exter, Ch. Fattinger, and D. Grischkowsky, "Terahertz time-domain spectroscopy of water vapor," Opt. Lett. 14 1128-1130 (1989).

Appl. Opt. (1)

Appl. Phys. Lett. (5)

A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Köhler, "Femtosecond time-resolved optical pump-probe spectroscopy at kHz-scan-rates over ns-time-delays without mechanical delay line," Appl. Phys. Lett. submitted (2005).

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, "High-intensity THz radiation from a microstructured large-area photoconductor," Appl. Phys. Lett. 86 121114 (2004).
[CrossRef]

Q. Wu and X.-C. Zhang, "Ultrafast electro-optic field sensors," Appl. Phys. Lett. 68 1604-1606 (1996).
[CrossRef]

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, "Generation and field resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz," Appl. Phys. Lett. 76 3191-3193 (2000).
[CrossRef]

T. Yasui, E. Saneyoshi, and T. Araki, "Asynchronous optical sampling THz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition," Appl. Phys. Lett. 87, 061101 (2005).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

D.W. van der Weide, J. Murakowski, and F. Keilmann, "Gas-absorption spectroscopy with electronic terahertz techniques," IEEE Trans. Microwave Theory Tech. 48 740-743 (2000).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (3)

Opt. Lett. (3)

Other (2)

D. Mittleman (ed.), Sensing with THz radiation (Springer, Heidelberg, 2002) and references therein.

J.M. Flaud, C. Camy-Peyret, and R.A. Toth, Water vapor line parameters from microwave to medium infrared (Pergamon, Oxford, 1981).

Supplementary Material (2)

» Media 1: GIF (101 KB)     
» Media 2: GIF (76 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics