Abstract

Individual carbon nanotubes being substantially smaller than the wavelength of light, are not much responsive to optical manipulation. Here we demonstrate how decorating single-walled carbon nanotubes with palladium particles makes optical trapping and manipulation easier. Palladium decorated nanotubes (Pd/SWNTs) have higher effective dielectric constant and are trapped at much lower laser power level with greater ease. In addition, we report the transportation of Pd/SWNTs using an asymmetric line trap. Using this method carbon nanotubes can be transported in any desired direction with high transportation speed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. N. R. Rao and A. Govindaraj, “Nanotubes and Nanowires,” The Royal Society of Chemistry (London),2005.
  2. S. Ghosh, A. K. Sood, and N. Kumar, “Carbon Nanotube Flow Sensors,” Science 299, 1042–1044 (2003).
    [Crossref] [PubMed]
  3. H. W. C. Postma, A. Sellmeijer, and C. Dekker, “Manipulation and Imaging of Individual Single-Walled Carbon Nanotubes with an Atomic Force Microscope,” Adv. Mater. 12, 1299–1302 (2000).
    [Crossref]
  4. T. Hertel, R. Martel, and P. Avouris, “Manipulation of Individual Carbon Nanotubes and Their Interaction with Surfaces,” J. Phys. Chem. 102, 910–915 (1998).
    [Crossref]
  5. P. Avouris, T. Hertel, R. Martel, T. Schmidt, H. R. Shea, and R. E. Walkup, “Carbon nanotubes: nanomechanics, manipulation and electronic devices,” Appl. Surf. Sci. 141, 201–209 (1999).
    [Crossref]
  6. L. Roschier, J. Penttila, M. Martin, P. Hakonen, and M. Paalanen, “Single-electron transistor made of multiwalled carbon nanotube using scanning probe manipulation,” Appl. Phys. Lett. 75, 728–730 (1999).
    [Crossref]
  7. L. A. Nagahara, I. Amlani, J. Lewenstein, and R. K. Tsui, “Direct placement of suspended carbon nanotubes for nanometer-scale assembly,” Appl. Phys. Lett. 80, 3826–3828 (2002).
    [Crossref]
  8. B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, and P. Poulin1, “Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes,” Science 290, 1331–1334 (2000).
    [Crossref] [PubMed]
  9. J. Plewa, E. Tanner, D. M. Mueth, and D. G. Grier, “Processing carbon nanotubes with holographic optical tweezers,” Opt. Express 12, 1978–1981 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1978
    [Crossref] [PubMed]
  10. S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical Trapping of Single-Walled Carbon Nanotubes,” Nano Lett. 4, 1415–1419 (2004).
    [Crossref]
  11. S. K. Mohanty and P. K. Gupta, “Transport of microscopic objects using asymmetric transverse optical gradient force,” Appl. Phys. B. 81, 159–162 (2005).
    [Crossref]
  12. S. R. C. Vivekchand, R. Jayakanth, A. Govindaraj, and C. N. R. Rao, “The Problem of Purifying Single-Walled Carbon Nanotubes,” Small 1, 920–923 (2005).
    [Crossref]
  13. B. C. Satishkumary, E. M. Vogl, A Govindaraj, and C. N. R. Rao, “The decoration of carbon nanotubes by metal nanoparticles,” J. Phys. D: Appl. Phys. 29, 3173–3176 (1996).
    [Crossref]
  14. M. J. OConnell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297, 593–596 (2002).
    [Crossref]
  15. T. Tlusty, A. Meller, and R. Bar-Ziv, “Optical Gradient Forces of Strongly Localized Fields,” Phys. Rev. Lett. 81, 1738–1741 (1998).
    [Crossref]

2005 (2)

S. K. Mohanty and P. K. Gupta, “Transport of microscopic objects using asymmetric transverse optical gradient force,” Appl. Phys. B. 81, 159–162 (2005).
[Crossref]

S. R. C. Vivekchand, R. Jayakanth, A. Govindaraj, and C. N. R. Rao, “The Problem of Purifying Single-Walled Carbon Nanotubes,” Small 1, 920–923 (2005).
[Crossref]

2004 (2)

2003 (1)

S. Ghosh, A. K. Sood, and N. Kumar, “Carbon Nanotube Flow Sensors,” Science 299, 1042–1044 (2003).
[Crossref] [PubMed]

2002 (2)

L. A. Nagahara, I. Amlani, J. Lewenstein, and R. K. Tsui, “Direct placement of suspended carbon nanotubes for nanometer-scale assembly,” Appl. Phys. Lett. 80, 3826–3828 (2002).
[Crossref]

M. J. OConnell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297, 593–596 (2002).
[Crossref]

2000 (2)

B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, and P. Poulin1, “Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes,” Science 290, 1331–1334 (2000).
[Crossref] [PubMed]

H. W. C. Postma, A. Sellmeijer, and C. Dekker, “Manipulation and Imaging of Individual Single-Walled Carbon Nanotubes with an Atomic Force Microscope,” Adv. Mater. 12, 1299–1302 (2000).
[Crossref]

1999 (2)

P. Avouris, T. Hertel, R. Martel, T. Schmidt, H. R. Shea, and R. E. Walkup, “Carbon nanotubes: nanomechanics, manipulation and electronic devices,” Appl. Surf. Sci. 141, 201–209 (1999).
[Crossref]

L. Roschier, J. Penttila, M. Martin, P. Hakonen, and M. Paalanen, “Single-electron transistor made of multiwalled carbon nanotube using scanning probe manipulation,” Appl. Phys. Lett. 75, 728–730 (1999).
[Crossref]

1998 (2)

T. Hertel, R. Martel, and P. Avouris, “Manipulation of Individual Carbon Nanotubes and Their Interaction with Surfaces,” J. Phys. Chem. 102, 910–915 (1998).
[Crossref]

T. Tlusty, A. Meller, and R. Bar-Ziv, “Optical Gradient Forces of Strongly Localized Fields,” Phys. Rev. Lett. 81, 1738–1741 (1998).
[Crossref]

1996 (1)

B. C. Satishkumary, E. M. Vogl, A Govindaraj, and C. N. R. Rao, “The decoration of carbon nanotubes by metal nanoparticles,” J. Phys. D: Appl. Phys. 29, 3173–3176 (1996).
[Crossref]

Amlani, I.

L. A. Nagahara, I. Amlani, J. Lewenstein, and R. K. Tsui, “Direct placement of suspended carbon nanotubes for nanometer-scale assembly,” Appl. Phys. Lett. 80, 3826–3828 (2002).
[Crossref]

Avouris, P.

P. Avouris, T. Hertel, R. Martel, T. Schmidt, H. R. Shea, and R. E. Walkup, “Carbon nanotubes: nanomechanics, manipulation and electronic devices,” Appl. Surf. Sci. 141, 201–209 (1999).
[Crossref]

T. Hertel, R. Martel, and P. Avouris, “Manipulation of Individual Carbon Nanotubes and Their Interaction with Surfaces,” J. Phys. Chem. 102, 910–915 (1998).
[Crossref]

Bachilo, S. M.

M. J. OConnell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297, 593–596 (2002).
[Crossref]

Bar-Ziv, R.

T. Tlusty, A. Meller, and R. Bar-Ziv, “Optical Gradient Forces of Strongly Localized Fields,” Phys. Rev. Lett. 81, 1738–1741 (1998).
[Crossref]

Bernier, P.

B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, and P. Poulin1, “Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes,” Science 290, 1331–1334 (2000).
[Crossref] [PubMed]

Boul, P. J.

M. J. OConnell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297, 593–596 (2002).
[Crossref]

Cai, C. W.

S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical Trapping of Single-Walled Carbon Nanotubes,” Nano Lett. 4, 1415–1419 (2004).
[Crossref]

Coulon, C.

B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, and P. Poulin1, “Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes,” Science 290, 1331–1334 (2000).
[Crossref] [PubMed]

Dekker, C.

H. W. C. Postma, A. Sellmeijer, and C. Dekker, “Manipulation and Imaging of Individual Single-Walled Carbon Nanotubes with an Atomic Force Microscope,” Adv. Mater. 12, 1299–1302 (2000).
[Crossref]

Ghosh, S.

S. Ghosh, A. K. Sood, and N. Kumar, “Carbon Nanotube Flow Sensors,” Science 299, 1042–1044 (2003).
[Crossref] [PubMed]

Govindaraj, A

B. C. Satishkumary, E. M. Vogl, A Govindaraj, and C. N. R. Rao, “The decoration of carbon nanotubes by metal nanoparticles,” J. Phys. D: Appl. Phys. 29, 3173–3176 (1996).
[Crossref]

Govindaraj, A.

S. R. C. Vivekchand, R. Jayakanth, A. Govindaraj, and C. N. R. Rao, “The Problem of Purifying Single-Walled Carbon Nanotubes,” Small 1, 920–923 (2005).
[Crossref]

C. N. R. Rao and A. Govindaraj, “Nanotubes and Nanowires,” The Royal Society of Chemistry (London),2005.

Grier, D. G.

Gupta, P. K.

S. K. Mohanty and P. K. Gupta, “Transport of microscopic objects using asymmetric transverse optical gradient force,” Appl. Phys. B. 81, 159–162 (2005).
[Crossref]

Hakonen, P.

L. Roschier, J. Penttila, M. Martin, P. Hakonen, and M. Paalanen, “Single-electron transistor made of multiwalled carbon nanotube using scanning probe manipulation,” Appl. Phys. Lett. 75, 728–730 (1999).
[Crossref]

Haroz, E. H.

M. J. OConnell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297, 593–596 (2002).
[Crossref]

Hauge, R. H.

M. J. OConnell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297, 593–596 (2002).
[Crossref]

Hertel, T.

P. Avouris, T. Hertel, R. Martel, T. Schmidt, H. R. Shea, and R. E. Walkup, “Carbon nanotubes: nanomechanics, manipulation and electronic devices,” Appl. Surf. Sci. 141, 201–209 (1999).
[Crossref]

T. Hertel, R. Martel, and P. Avouris, “Manipulation of Individual Carbon Nanotubes and Their Interaction with Surfaces,” J. Phys. Chem. 102, 910–915 (1998).
[Crossref]

Huffman, C. B.

M. J. OConnell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297, 593–596 (2002).
[Crossref]

Jayakanth, R.

S. R. C. Vivekchand, R. Jayakanth, A. Govindaraj, and C. N. R. Rao, “The Problem of Purifying Single-Walled Carbon Nanotubes,” Small 1, 920–923 (2005).
[Crossref]

Journet, C.

B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, and P. Poulin1, “Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes,” Science 290, 1331–1334 (2000).
[Crossref] [PubMed]

Kittrell, C.

M. J. OConnell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297, 593–596 (2002).
[Crossref]

Kumar, N.

S. Ghosh, A. K. Sood, and N. Kumar, “Carbon Nanotube Flow Sensors,” Science 299, 1042–1044 (2003).
[Crossref] [PubMed]

Lewenstein, J.

L. A. Nagahara, I. Amlani, J. Lewenstein, and R. K. Tsui, “Direct placement of suspended carbon nanotubes for nanometer-scale assembly,” Appl. Phys. Lett. 80, 3826–3828 (2002).
[Crossref]

Lopez, H. A.

S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical Trapping of Single-Walled Carbon Nanotubes,” Nano Lett. 4, 1415–1419 (2004).
[Crossref]

Ma, J.

M. J. OConnell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297, 593–596 (2002).
[Crossref]

Martel, R.

P. Avouris, T. Hertel, R. Martel, T. Schmidt, H. R. Shea, and R. E. Walkup, “Carbon nanotubes: nanomechanics, manipulation and electronic devices,” Appl. Surf. Sci. 141, 201–209 (1999).
[Crossref]

T. Hertel, R. Martel, and P. Avouris, “Manipulation of Individual Carbon Nanotubes and Their Interaction with Surfaces,” J. Phys. Chem. 102, 910–915 (1998).
[Crossref]

Martin, M.

L. Roschier, J. Penttila, M. Martin, P. Hakonen, and M. Paalanen, “Single-electron transistor made of multiwalled carbon nanotube using scanning probe manipulation,” Appl. Phys. Lett. 75, 728–730 (1999).
[Crossref]

Meller, A.

T. Tlusty, A. Meller, and R. Bar-Ziv, “Optical Gradient Forces of Strongly Localized Fields,” Phys. Rev. Lett. 81, 1738–1741 (1998).
[Crossref]

Mohanty, S. K.

S. K. Mohanty and P. K. Gupta, “Transport of microscopic objects using asymmetric transverse optical gradient force,” Appl. Phys. B. 81, 159–162 (2005).
[Crossref]

Moore, V. C.

M. J. OConnell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297, 593–596 (2002).
[Crossref]

Mueth, D. M.

Nagahara, L. A.

L. A. Nagahara, I. Amlani, J. Lewenstein, and R. K. Tsui, “Direct placement of suspended carbon nanotubes for nanometer-scale assembly,” Appl. Phys. Lett. 80, 3826–3828 (2002).
[Crossref]

Noon, W. H.

M. J. OConnell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297, 593–596 (2002).
[Crossref]

OConnell, M. J.

M. J. OConnell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297, 593–596 (2002).
[Crossref]

Paalanen, M.

L. Roschier, J. Penttila, M. Martin, P. Hakonen, and M. Paalanen, “Single-electron transistor made of multiwalled carbon nanotube using scanning probe manipulation,” Appl. Phys. Lett. 75, 728–730 (1999).
[Crossref]

Pailler, R.

B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, and P. Poulin1, “Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes,” Science 290, 1331–1334 (2000).
[Crossref] [PubMed]

Penicaud, A.

B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, and P. Poulin1, “Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes,” Science 290, 1331–1334 (2000).
[Crossref] [PubMed]

Penttila, J.

L. Roschier, J. Penttila, M. Martin, P. Hakonen, and M. Paalanen, “Single-electron transistor made of multiwalled carbon nanotube using scanning probe manipulation,” Appl. Phys. Lett. 75, 728–730 (1999).
[Crossref]

Plewa, J.

Postma, H. W. C.

H. W. C. Postma, A. Sellmeijer, and C. Dekker, “Manipulation and Imaging of Individual Single-Walled Carbon Nanotubes with an Atomic Force Microscope,” Adv. Mater. 12, 1299–1302 (2000).
[Crossref]

Poulin1, P.

B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, and P. Poulin1, “Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes,” Science 290, 1331–1334 (2000).
[Crossref] [PubMed]

Rao, C. N. R.

S. R. C. Vivekchand, R. Jayakanth, A. Govindaraj, and C. N. R. Rao, “The Problem of Purifying Single-Walled Carbon Nanotubes,” Small 1, 920–923 (2005).
[Crossref]

B. C. Satishkumary, E. M. Vogl, A Govindaraj, and C. N. R. Rao, “The decoration of carbon nanotubes by metal nanoparticles,” J. Phys. D: Appl. Phys. 29, 3173–3176 (1996).
[Crossref]

C. N. R. Rao and A. Govindaraj, “Nanotubes and Nanowires,” The Royal Society of Chemistry (London),2005.

Rialon, K. L.

M. J. OConnell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297, 593–596 (2002).
[Crossref]

Roschier, L.

L. Roschier, J. Penttila, M. Martin, P. Hakonen, and M. Paalanen, “Single-electron transistor made of multiwalled carbon nanotube using scanning probe manipulation,” Appl. Phys. Lett. 75, 728–730 (1999).
[Crossref]

Satishkumary, B. C.

B. C. Satishkumary, E. M. Vogl, A Govindaraj, and C. N. R. Rao, “The decoration of carbon nanotubes by metal nanoparticles,” J. Phys. D: Appl. Phys. 29, 3173–3176 (1996).
[Crossref]

Sauder, C.

B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, and P. Poulin1, “Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes,” Science 290, 1331–1334 (2000).
[Crossref] [PubMed]

Schmidt, T.

P. Avouris, T. Hertel, R. Martel, T. Schmidt, H. R. Shea, and R. E. Walkup, “Carbon nanotubes: nanomechanics, manipulation and electronic devices,” Appl. Surf. Sci. 141, 201–209 (1999).
[Crossref]

Sellmeijer, A.

H. W. C. Postma, A. Sellmeijer, and C. Dekker, “Manipulation and Imaging of Individual Single-Walled Carbon Nanotubes with an Atomic Force Microscope,” Adv. Mater. 12, 1299–1302 (2000).
[Crossref]

Shea, H. R.

P. Avouris, T. Hertel, R. Martel, T. Schmidt, H. R. Shea, and R. E. Walkup, “Carbon nanotubes: nanomechanics, manipulation and electronic devices,” Appl. Surf. Sci. 141, 201–209 (1999).
[Crossref]

Smalley, R. E.

M. J. OConnell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297, 593–596 (2002).
[Crossref]

Sood, A. K.

S. Ghosh, A. K. Sood, and N. Kumar, “Carbon Nanotube Flow Sensors,” Science 299, 1042–1044 (2003).
[Crossref] [PubMed]

Strano, M. S.

M. J. OConnell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297, 593–596 (2002).
[Crossref]

Tan, S.

S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical Trapping of Single-Walled Carbon Nanotubes,” Nano Lett. 4, 1415–1419 (2004).
[Crossref]

Tanner, E.

Tlusty, T.

T. Tlusty, A. Meller, and R. Bar-Ziv, “Optical Gradient Forces of Strongly Localized Fields,” Phys. Rev. Lett. 81, 1738–1741 (1998).
[Crossref]

Tsui, R. K.

L. A. Nagahara, I. Amlani, J. Lewenstein, and R. K. Tsui, “Direct placement of suspended carbon nanotubes for nanometer-scale assembly,” Appl. Phys. Lett. 80, 3826–3828 (2002).
[Crossref]

Vigolo, B.

B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, and P. Poulin1, “Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes,” Science 290, 1331–1334 (2000).
[Crossref] [PubMed]

Vivekchand, S. R. C.

S. R. C. Vivekchand, R. Jayakanth, A. Govindaraj, and C. N. R. Rao, “The Problem of Purifying Single-Walled Carbon Nanotubes,” Small 1, 920–923 (2005).
[Crossref]

Vogl, E. M.

B. C. Satishkumary, E. M. Vogl, A Govindaraj, and C. N. R. Rao, “The decoration of carbon nanotubes by metal nanoparticles,” J. Phys. D: Appl. Phys. 29, 3173–3176 (1996).
[Crossref]

Walkup, R. E.

P. Avouris, T. Hertel, R. Martel, T. Schmidt, H. R. Shea, and R. E. Walkup, “Carbon nanotubes: nanomechanics, manipulation and electronic devices,” Appl. Surf. Sci. 141, 201–209 (1999).
[Crossref]

Weisman, R. B.

M. J. OConnell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297, 593–596 (2002).
[Crossref]

Zhang, Y.

S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical Trapping of Single-Walled Carbon Nanotubes,” Nano Lett. 4, 1415–1419 (2004).
[Crossref]

Adv. Mater. (1)

H. W. C. Postma, A. Sellmeijer, and C. Dekker, “Manipulation and Imaging of Individual Single-Walled Carbon Nanotubes with an Atomic Force Microscope,” Adv. Mater. 12, 1299–1302 (2000).
[Crossref]

Appl. Phys. B. (1)

S. K. Mohanty and P. K. Gupta, “Transport of microscopic objects using asymmetric transverse optical gradient force,” Appl. Phys. B. 81, 159–162 (2005).
[Crossref]

Appl. Phys. Lett. (2)

L. Roschier, J. Penttila, M. Martin, P. Hakonen, and M. Paalanen, “Single-electron transistor made of multiwalled carbon nanotube using scanning probe manipulation,” Appl. Phys. Lett. 75, 728–730 (1999).
[Crossref]

L. A. Nagahara, I. Amlani, J. Lewenstein, and R. K. Tsui, “Direct placement of suspended carbon nanotubes for nanometer-scale assembly,” Appl. Phys. Lett. 80, 3826–3828 (2002).
[Crossref]

Appl. Surf. Sci. (1)

P. Avouris, T. Hertel, R. Martel, T. Schmidt, H. R. Shea, and R. E. Walkup, “Carbon nanotubes: nanomechanics, manipulation and electronic devices,” Appl. Surf. Sci. 141, 201–209 (1999).
[Crossref]

J. Phys. Chem. (1)

T. Hertel, R. Martel, and P. Avouris, “Manipulation of Individual Carbon Nanotubes and Their Interaction with Surfaces,” J. Phys. Chem. 102, 910–915 (1998).
[Crossref]

J. Phys. D: Appl. Phys. (1)

B. C. Satishkumary, E. M. Vogl, A Govindaraj, and C. N. R. Rao, “The decoration of carbon nanotubes by metal nanoparticles,” J. Phys. D: Appl. Phys. 29, 3173–3176 (1996).
[Crossref]

Nano Lett. (1)

S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical Trapping of Single-Walled Carbon Nanotubes,” Nano Lett. 4, 1415–1419 (2004).
[Crossref]

Opt. Express (1)

Phys. Rev. Lett. (1)

T. Tlusty, A. Meller, and R. Bar-Ziv, “Optical Gradient Forces of Strongly Localized Fields,” Phys. Rev. Lett. 81, 1738–1741 (1998).
[Crossref]

Science (3)

M. J. OConnell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297, 593–596 (2002).
[Crossref]

B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, and P. Poulin1, “Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes,” Science 290, 1331–1334 (2000).
[Crossref] [PubMed]

S. Ghosh, A. K. Sood, and N. Kumar, “Carbon Nanotube Flow Sensors,” Science 299, 1042–1044 (2003).
[Crossref] [PubMed]

Small (1)

S. R. C. Vivekchand, R. Jayakanth, A. Govindaraj, and C. N. R. Rao, “The Problem of Purifying Single-Walled Carbon Nanotubes,” Small 1, 920–923 (2005).
[Crossref]

Other (1)

C. N. R. Rao and A. Govindaraj, “Nanotubes and Nanowires,” The Royal Society of Chemistry (London),2005.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Optical microscope images of trapped Pd/SWNT (a-c) and pure SWNT (d). In frame (a) the laser is off. Frame (b) shows the trapping of Pd/SWNT at 118 mW laser power. The image is a diffraction limited image and hence it does not represent the real size of the trapped nanotube. In (c), the trapping of SWNT-Pd has been shown at laser power of 170 mW when more than one nanotube get trapped and a more prominent dark spot is visible at the trap center. Frame (d) shows the trapping of pure SWNT at 214 mW.

Fig. 2.
Fig. 2.

Optical layout of the asymmetric line trap. For normal incidence (beam position 1) on the cylindrical lens, a symmetric line trap is formed at the sample plane. The intensity profile and the corresponding potential well for this case have been shown in inset A. When the incident beam is tilted about Y axis (position 2), the intensity profile and the potential well of the line trap become asymmetric. The intensity profile and the potential well corresponding to beam position 2 have been displayed in inset B. For beam position 2, the scattering force (F S2) gains a nonzero transverse component acting along the direction of flatter potential of the line trap. TL and MO represent the tube lens and the microscope objective respectively.

Fig. 3.
Fig. 3.

Time lapse images of the transportation of a Pd/SWNT bundle in the asymmetric line trap. The parallel lines indicate the length and direction of the line trap. A color bar in each image indicates the asymmetry in the beam intensity profile of the trap. The bundle is pulled toward the maximum intensity point from the steeper gradient side with a higher velocity and then pushed to the other end at much lower speed.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

W = α IdV

Metrics