Abstract

Individual carbon nanotubes being substantially smaller than the wavelength of light, are not much responsive to optical manipulation. Here we demonstrate how decorating single-walled carbon nanotubes with palladium particles makes optical trapping and manipulation easier. Palladium decorated nanotubes (Pd/SWNTs) have higher effective dielectric constant and are trapped at much lower laser power level with greater ease. In addition, we report the transportation of Pd/SWNTs using an asymmetric line trap. Using this method carbon nanotubes can be transported in any desired direction with high transportation speed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. N. R. Rao and A. Govindaraj, "Nanotubes and Nanowires," The Royal Society of Chemistry (London), 2005.
  2. S. Ghosh, A. K. Sood and N. Kumar, "Carbon Nanotube Flow Sensors," Science 299, 1042-1044 (2003).
    [CrossRef] [PubMed]
  3. H. W. C. Postma, A. Sellmeijer and C. Dekker, "Manipulation and Imaging of Individual Single-Walled Carbon Nanotubes with an Atomic Force Microscope," Adv. Mater. 12, 1299-1302 (2000).
    [CrossRef]
  4. T. Hertel, R. Martel and P. Avouris, "Manipulation of Individual Carbon Nanotubes and Their Interaction with Surfaces," J. Phys. Chem. 102, 910-915 (1998).
    [CrossRef]
  5. P. Avouris, T. Hertel, R. Martel, T. Schmidt, H. R. Shea and R. E. Walkup, "Carbon nanotubes: nanomechanics, manipulation and electronic devices," Appl. Surf. Sci. 141, 201-209 (1999).
    [CrossRef]
  6. L. Roschier, J. Penttila, M. Martin, P. Hakonen and M. Paalanen, "Single-electron transistor made of multiwalled carbon nanotube using scanning probe manipulation," Appl. Phys. Lett. 75, 728-730 (1999).
    [CrossRef]
  7. L. A. Nagahara, I. Amlani, J. Lewenstein and R. K. Tsui, "Direct placement of suspended carbon nanotubes for nanometer-scale assembly," Appl. Phys. Lett. 80, 3826-3828 (2002).
    [CrossRef]
  8. B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier and P. Poulin, "Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes," Science 290, 1331-1334 (2000).
    [CrossRef] [PubMed]
  9. J. Plewa, E. Tanner, D. M. Mueth and D. G. Grier, "Processing carbon nanotubes with holographic optical tweezers," Opt. Express 12, 1978-1981 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1978">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1978</a>.
    [CrossRef] [PubMed]
  10. S. Tan, H. A. Lopez, C. W. Cai and Y. Zhang, "Optical Trapping of Single-Walled Carbon Nanotubes," Nano Lett. 4, 1415-1419 (2004).
    [CrossRef]
  11. S. K. Mohanty and P. K. Gupta, "Transport of microscopic objects using asymmetric transverse optical gradient force," Appl. Phys. B 81, 159-162 (2005).
    [CrossRef]
  12. S. R. C. Vivekchand, R. Jayakanth, A. Govindaraj and C. N. R. Rao, "The Problem of Purifying Single-Walled Carbon Nanotubes," Small 1, 920-923 (2005).
    [CrossRef]
  13. B. C. Satishkumary, E. M. Vogl, A Govindaraj and C. N. R. Rao, "The decoration of carbon nanotubes by metal nanoparticles," J. Phys. D: Appl. Phys. 29, 3173-3176 (1996).
    [CrossRef]
  14. M. J. OConnell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman and R. E. Smalley, "Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes," Science 297, 593-596 (2002).
    [CrossRef]
  15. T. Tlusty, A. Meller and R. Bar-Ziv, "Optical Gradient Forces of Strongly Localized Fields," Phys. Rev. Lett. 81, 1738-1741 (1998).
    [CrossRef]

Adv. Mater. (1)

H. W. C. Postma, A. Sellmeijer and C. Dekker, "Manipulation and Imaging of Individual Single-Walled Carbon Nanotubes with an Atomic Force Microscope," Adv. Mater. 12, 1299-1302 (2000).
[CrossRef]

Appl. Phys. B (1)

S. K. Mohanty and P. K. Gupta, "Transport of microscopic objects using asymmetric transverse optical gradient force," Appl. Phys. B 81, 159-162 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

L. Roschier, J. Penttila, M. Martin, P. Hakonen and M. Paalanen, "Single-electron transistor made of multiwalled carbon nanotube using scanning probe manipulation," Appl. Phys. Lett. 75, 728-730 (1999).
[CrossRef]

L. A. Nagahara, I. Amlani, J. Lewenstein and R. K. Tsui, "Direct placement of suspended carbon nanotubes for nanometer-scale assembly," Appl. Phys. Lett. 80, 3826-3828 (2002).
[CrossRef]

Appl. Surf. Sci. (1)

P. Avouris, T. Hertel, R. Martel, T. Schmidt, H. R. Shea and R. E. Walkup, "Carbon nanotubes: nanomechanics, manipulation and electronic devices," Appl. Surf. Sci. 141, 201-209 (1999).
[CrossRef]

J. Phys. Chem. (1)

T. Hertel, R. Martel and P. Avouris, "Manipulation of Individual Carbon Nanotubes and Their Interaction with Surfaces," J. Phys. Chem. 102, 910-915 (1998).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

B. C. Satishkumary, E. M. Vogl, A Govindaraj and C. N. R. Rao, "The decoration of carbon nanotubes by metal nanoparticles," J. Phys. D: Appl. Phys. 29, 3173-3176 (1996).
[CrossRef]

Nano Lett. (1)

S. Tan, H. A. Lopez, C. W. Cai and Y. Zhang, "Optical Trapping of Single-Walled Carbon Nanotubes," Nano Lett. 4, 1415-1419 (2004).
[CrossRef]

Opt. Express (1)

Phys. Rev. Lett. (1)

T. Tlusty, A. Meller and R. Bar-Ziv, "Optical Gradient Forces of Strongly Localized Fields," Phys. Rev. Lett. 81, 1738-1741 (1998).
[CrossRef]

Science (3)

M. J. OConnell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman and R. E. Smalley, "Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes," Science 297, 593-596 (2002).
[CrossRef]

B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier and P. Poulin, "Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes," Science 290, 1331-1334 (2000).
[CrossRef] [PubMed]

S. Ghosh, A. K. Sood and N. Kumar, "Carbon Nanotube Flow Sensors," Science 299, 1042-1044 (2003).
[CrossRef] [PubMed]

Small (1)

S. R. C. Vivekchand, R. Jayakanth, A. Govindaraj and C. N. R. Rao, "The Problem of Purifying Single-Walled Carbon Nanotubes," Small 1, 920-923 (2005).
[CrossRef]

Other (1)

C. N. R. Rao and A. Govindaraj, "Nanotubes and Nanowires," The Royal Society of Chemistry (London), 2005.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Optical microscope images of trapped Pd/SWNT (a-c) and pure SWNT (d). In frame (a) the laser is off. Frame (b) shows the trapping of Pd/SWNT at 118 mW laser power. The image is a diffraction limited image and hence it does not represent the real size of the trapped nanotube. In (c), the trapping of SWNT-Pd has been shown at laser power of 170 mW when more than one nanotube get trapped and a more prominent dark spot is visible at the trap center. Frame (d) shows the trapping of pure SWNT at 214 mW.

Fig. 2.
Fig. 2.

Optical layout of the asymmetric line trap. For normal incidence (beam position 1) on the cylindrical lens, a symmetric line trap is formed at the sample plane. The intensity profile and the corresponding potential well for this case have been shown in inset A. When the incident beam is tilted about Y axis (position 2), the intensity profile and the potential well of the line trap become asymmetric. The intensity profile and the potential well corresponding to beam position 2 have been displayed in inset B. For beam position 2, the scattering force (F S2) gains a nonzero transverse component acting along the direction of flatter potential of the line trap. TL and MO represent the tube lens and the microscope objective respectively.

Fig. 3.
Fig. 3.

Time lapse images of the transportation of a Pd/SWNT bundle in the asymmetric line trap. The parallel lines indicate the length and direction of the line trap. A color bar in each image indicates the asymmetry in the beam intensity profile of the trap. The bundle is pulled toward the maximum intensity point from the steeper gradient side with a higher velocity and then pushed to the other end at much lower speed.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

W = α IdV

Metrics