Abstract

We use an interferometric detection scheme to directly detect single gold nanoparticles with a diameter as small as 5 nm in an aqueous environment. We demonstrate both confocal and wide-field detection of nanoparticles and study signal strength as a function of particle size. Furthermore, we demonstrate a detection speed up to 2 μs. We also show that gold nanoparticles can be readily distinguished from background scatterers by exploiting the wavelength dependence of their plasmon resonances. Our studies pave the way for the application of this detection scheme for particle tracking in biological systems.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. Goulian and S. M. Simon, "Tracking single proteins within cells," Biophys. J. 79, 2188-2198 (2000).
    [CrossRef] [PubMed]
  2. W. D. Yang, J. Gelles, and S. M. Musser, "Imaging of single-molecule translocation through nuclear pore complexes," Proc. Natl. Acad. Sci. U.S.A. 101, 12887-12892 (2004).
    [CrossRef] [PubMed]
  3. A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, "Single-molecule biomechanics with optical methods," Science 283, 1689-1695 (1999).
    [CrossRef] [PubMed]
  4. G. Seisenberger, M. U. Ried, T. Endress, H. Buning, M. Hallek, and C. Br¨auchle, "Real-time single-molecule imaging of the infection pathway of an adeno-associated virus," Science 294, 1929-1932 (2001).
    [CrossRef] [PubMed]
  5. A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, "Myosin V walks hand-overhand: Single fluorophore imaging with 1.5-nm localization," Science 300, 2061-2065 (2003).
    [CrossRef] [PubMed]
  6. X. Michalet, F. F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, "Quantum dots for live cells, in vivo imaging, and diagnostics," Science 307, 538-544 (2005).
    [CrossRef] [PubMed]
  7. C. J. Cogswell, D. K. Hamilton, and C. J. R. Sheppard, "Color confocal reflection microscopy using red, green and blue lasers," J. Microsc. 165, 103-117 (1992).
    [CrossRef]
  8. S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, "Single-target molecule detection with nonbleaching multicolor optical immunolabels," Proc. Natl. Acad. Sci. U.S.A. 97, 996-1001 (2000).
    [CrossRef] [PubMed]
  9. M. Horisberger and J. Rosset, ""Colloidal gold, a useful marker for transmission and scanning electron microscopy," J. Histochem. Cytochem. 25, 295-305 (1977).
    [CrossRef] [PubMed]
  10. C. S¨onnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. M¨oller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
    [CrossRef]
  11. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, New York, 1983).
  12. A. Arbouet, D. Christofilos, N. Del Fatti, F. Vall´ee, J. R. Huntzinger, L. Arnaud, P. Billaud, and M. Broyer, "Direct measurement of the single-metal-cluster optical absorption," Phys. Rev. Lett. 93, 127401 (2004).
    [CrossRef] [PubMed]
  13. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal imaging of nanometer-sized metal particles among scatterers," Science 297, 1160-1163 (2002).
    [CrossRef] [PubMed]
  14. S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, "Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals," Phys. Rev. Lett. 93, 257402 (2004).
    [CrossRef]
  15. K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, "Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy," Phys. Rev. Lett. 93, 037401 (2004).
    [CrossRef] [PubMed]
  16. T. Kalkbrenner, U. H°akanson, and V. Sandoghdar, "Tomographic plasmon spectroscopy of a single gold nanoparticle," Nano Lett. 4, 2309-2314 (2004).
    [CrossRef]
  17. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer Series in Material Science, Berlin, 1995).
  18. T. Fujiwara, K. Ritchie, H. Murakoshi, K. Jacobson, and A. Kusumi, "Phospholipids undergo hop diffusion in compartmentalized cell membrane," J. Cell Biol. 157, 1071-1081 (2002).
    [CrossRef] [PubMed]
  19. K. Ritchie, X.-Y. Shan, J. Kondo, K. Iwasawa, T. Fujiwara, and A. Kusumi, "Detection of non-Brownian diffusion in the cell membrane in single molecule tracking," Biophys. J. 88, 2266-2277 (2005).
    [CrossRef]
  20. H. Hess, G. D. Bachand, and V. Vogel, "Powering nanodevices with biomolecular motors," Chem. Eur. J. 10, 2110-2116 (2004).
    [CrossRef] [PubMed]
  21. C. Brunner, K.-H. Ernst, H. Hess, and V. Vogel, "Lifetime of biomolecules in polymer-based hybrid nanodevices," Nanotechnology 15, S540-S548 (2004).
    [CrossRef]

Appl. Phys. Lett. (1)

C. S¨onnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. M¨oller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Biophys. J. (2)

M. Goulian and S. M. Simon, "Tracking single proteins within cells," Biophys. J. 79, 2188-2198 (2000).
[CrossRef] [PubMed]

K. Ritchie, X.-Y. Shan, J. Kondo, K. Iwasawa, T. Fujiwara, and A. Kusumi, "Detection of non-Brownian diffusion in the cell membrane in single molecule tracking," Biophys. J. 88, 2266-2277 (2005).
[CrossRef]

Chem. Eur. J. (1)

H. Hess, G. D. Bachand, and V. Vogel, "Powering nanodevices with biomolecular motors," Chem. Eur. J. 10, 2110-2116 (2004).
[CrossRef] [PubMed]

J. Cell Biol. (1)

T. Fujiwara, K. Ritchie, H. Murakoshi, K. Jacobson, and A. Kusumi, "Phospholipids undergo hop diffusion in compartmentalized cell membrane," J. Cell Biol. 157, 1071-1081 (2002).
[CrossRef] [PubMed]

J. Histochem. Cytochem. (1)

M. Horisberger and J. Rosset, ""Colloidal gold, a useful marker for transmission and scanning electron microscopy," J. Histochem. Cytochem. 25, 295-305 (1977).
[CrossRef] [PubMed]

J. Microsc. (1)

C. J. Cogswell, D. K. Hamilton, and C. J. R. Sheppard, "Color confocal reflection microscopy using red, green and blue lasers," J. Microsc. 165, 103-117 (1992).
[CrossRef]

Nano Lett. (1)

T. Kalkbrenner, U. H°akanson, and V. Sandoghdar, "Tomographic plasmon spectroscopy of a single gold nanoparticle," Nano Lett. 4, 2309-2314 (2004).
[CrossRef]

Nanotechnology (1)

C. Brunner, K.-H. Ernst, H. Hess, and V. Vogel, "Lifetime of biomolecules in polymer-based hybrid nanodevices," Nanotechnology 15, S540-S548 (2004).
[CrossRef]

Phys. Rev. Lett. (3)

A. Arbouet, D. Christofilos, N. Del Fatti, F. Vall´ee, J. R. Huntzinger, L. Arnaud, P. Billaud, and M. Broyer, "Direct measurement of the single-metal-cluster optical absorption," Phys. Rev. Lett. 93, 127401 (2004).
[CrossRef] [PubMed]

S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, "Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals," Phys. Rev. Lett. 93, 257402 (2004).
[CrossRef]

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, "Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy," Phys. Rev. Lett. 93, 037401 (2004).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, "Single-target molecule detection with nonbleaching multicolor optical immunolabels," Proc. Natl. Acad. Sci. U.S.A. 97, 996-1001 (2000).
[CrossRef] [PubMed]

W. D. Yang, J. Gelles, and S. M. Musser, "Imaging of single-molecule translocation through nuclear pore complexes," Proc. Natl. Acad. Sci. U.S.A. 101, 12887-12892 (2004).
[CrossRef] [PubMed]

Science (4)

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, "Single-molecule biomechanics with optical methods," Science 283, 1689-1695 (1999).
[CrossRef] [PubMed]

G. Seisenberger, M. U. Ried, T. Endress, H. Buning, M. Hallek, and C. Br¨auchle, "Real-time single-molecule imaging of the infection pathway of an adeno-associated virus," Science 294, 1929-1932 (2001).
[CrossRef] [PubMed]

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, "Myosin V walks hand-overhand: Single fluorophore imaging with 1.5-nm localization," Science 300, 2061-2065 (2003).
[CrossRef] [PubMed]

X. Michalet, F. F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, "Quantum dots for live cells, in vivo imaging, and diagnostics," Science 307, 538-544 (2005).
[CrossRef] [PubMed]

Sciences (1)

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal imaging of nanometer-sized metal particles among scatterers," Science 297, 1160-1163 (2002).
[CrossRef] [PubMed]

Other (2)

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer Series in Material Science, Berlin, 1995).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematics of the experimental arrangement. Some components, such as the two-color mode overlap in a single mode fiber, are not used for all experiments. See text for a detailed discussion.

Fig. 2.
Fig. 2.

Confocal images of a) 20 nm, b) 10 nm and c) 5 nm Au particles acquired using an illumination wavelength of 532 nm. Below each image a cross-section is shown. The bottom row shows histograms of the signal strength distribution for about 60 particles. The images have been treated by a line-by-line linear slope subtraction to account for slow laser intensity changes, but the cross sections and histograms represent raw data.

Fig. 3.
Fig. 3.

Normalized intensity σ from particles observed in confocal scans plotted against mean particle diameter. The normalized intensity was measured at wavelengths of 488 nm (open circles) and 532 nm (filled squares). The vertical error bars were determined from the spread in s determined from about 10 particles for each particle size. The horizontal error bars show the uncertainty in the particle diameter as specified by the manufacturer.

Fig. 4.
Fig. 4.

Confocal images of the same Au particles (size 10 nm, λ = 532 nm) using illumination intensities of a) 10mW and b) 0.2mW; c) cross-sections through the images indicated in a) (black) and in b) (gray).

Fig. 5.
Fig. 5.

Normalized intensity detected at the glass-water interface while scanning the beam laterally across the sample area selected by an enlarged pinhole. a, b) Detection of particles 30 nm and 20 nm, in diameter under illumination power of 2mW. c, d) Detection of particles 20 nm and 10 nm, in diameter under illumination power of 30mW.

Fig. 6.
Fig. 6.

Deconvolved images of gold nanoparticles of diameter a) 20 nm and c) 15 nm obtained using wide-field detection and sample position modulation (see text for details). b) and d) show cross-sections marked by solid lines in the corresponding images to the left.

Fig. 7.
Fig. 7.

a) Calculated scattering spectrum of a 20 nm gold particle in the dipole approximation. The two wavelengths λ used to obtain the images shown in b), c), and d) are indicated. b) Confocal scan of a microtubule labeled with gold nanoparticles of 40 nm diameter (see text for details) imaged at λ = 532 nm, c) Simultaneously acquired scan at λ = 488 nm. Both images show the normalized intensity σ with the same color scale –0.125…0.025. d) Difference in normalized intensity σ (532 nm)- σ (488 nm) plotted using the same color scale.

Fig. 8.
Fig. 8.

Confocal images of the same area on a sample with 5 nm Au particles obtained with different illumination wavelengths: a) 488 nm and b) 532 nm. c) displays the difference in normalized intensity calculated from a) and b). See text for details. a) and b) are plotted using the same color scale; the color scale in c) is modified for better visibility.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I m = E r + E s 2 = E i 2 ( r 2 + s 2 2 r s sin φ )
σ ( d ) = I m ( d ) I r I r

Metrics