Abstract

- We present an experimental analysis of polarization and intermodal noise-seeded parametric amplification, in which dispersion is phase matched by group velocity mismatch between either polarization or spatial modes in birefringent holey fiber with elliptical core composed of a triple defect. By injecting quasi-CW intense linearly polarized pump pulses either parallel or at 45 degrees with respect to the fiber polarization axes, we observed the simultaneous generation of polarization or intermodal modulation instability sidebands. Furthermore, by shifting the pump wavelength from 532 to 625 nm, we observed a shift of polarization sidebands from 3 to 8 THz, whereas intermodal sidebands shifted from 33 to 63 THz. These observations are in excellent agreement with the experimental characterization and theoretical estimates of phase and group velocities for the respective fiber modes.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
    [CrossRef]
  2. S. Wabnitz, "Modulational polarization instability of light in a nonlinear birefringent dispersive medium," Phys. Rev. A 38, 2018-2020 (1988).
    [CrossRef] [PubMed]
  3. S. Murdoch, R. Leonhardt, and J. Harvey, "Polarization modulation instability in weakly birefringent fibers," Opt. Lett. 20, 866 (1995).
    [CrossRef] [PubMed]
  4. J. E. Rothenberg, "Modulational instability for normal dispersion," Phys. Rev. A 42, 682-685 (1990).
    [CrossRef] [PubMed]
  5. P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt and J. D. Harvey, "Cross-phase modulational instability in high-birefringence fibers," Opt. Commun. 78, 137-142 (1990).
    [CrossRef]
  6. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibers," Nature 424, 511-515 (2003).
    [CrossRef] [PubMed]
  7. A. Zhang and M. S. Demokan, "Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber," Opt. Lett. 30, 2375-2377 (2005).
    [CrossRef] [PubMed]
  8. C. J. S. de Matos, J. R. Taylor, and K. P. Hansen, "Continuous-wave, totally fiber integrated optical parametric oscillator using holey fiber," Opt. Lett. 29, 983-985 (2004).
    [CrossRef] [PubMed]
  9. A. Y. H.. Chen, G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Widely tunable optical parametric generation in a photonic crystal fiber," Opt. Lett. 30, 762-764 (2005).
    [CrossRef] [PubMed]
  10. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  11. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, S. Coen, "Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping," J. Opt. Soc. Am. B 19, 765-771 (2002).
    [CrossRef]
  12. A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, "Generation of a broadband single-mode supercontinuum in a conventional dispersion shifted fiber by use of a subnanosecond microchip laser," Opt. Lett. 28, 1820-1823 (2003).
    [CrossRef] [PubMed]
  13. A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. Wadsworth, J. C. Knight, and P. St. J. Russell, "Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses," J. Opt. Soc. Am. B 9, 2165-2170 (2002).
    [CrossRef]
  14. M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, "Supercontinuum generation in a highly birefringent microstructured fiber," Appl. Phys. Lett. 82, 2197-2199 (2003).
    [CrossRef]
  15. A. Proulx, J.M. Ménard, N. Ho, J.M. Laniel, R. Vallée, and C. Paré, "Intensity and polarization dependences of the supercontinuum generation in birefringent and highly nonlinear microstructured fibers," Opt. Express 11, 3338-3345 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3338">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3338</a>.
    [CrossRef] [PubMed]
  16. Z. Zhu, and T. G. Brown, "Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fibers," J. Opt. Soc. Am. B 21, 249-257 (2004).
    [CrossRef]
  17. G. Millot, A. Sauter, J. M. Dudley, L. Provino, and R. S. Windeler, "Polarization mode dispersion and vectorial modulational instability in air-silica microstructure fiber," Opt. Lett. 27, 695-697 (2002).
    [CrossRef]
  18. S. Pitois, A. Tonello, S. Wabnitz, G. Millot, T. Martynkien, W. Urbanczyk, J. Wojcik, A. Locatelli, M. Conforti, "Observation of frequency tunable polarization and modal modulation instability in birefringent holey fiber with triple defects," Proc. of LEOS 2005, 23-27 October 2005, Sydney, Australia, paper PD 1.4.
  19. M. Szpulak, G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbanczyk, J. Wojcik, M. Makara, J. Klimek, T. Nasilowski, F. Berghmans, and H. Thienpont, "Experimental and theoretical investigations of birefringent holey fibers with triple defects," Appl. Opt. 44, 2652-2658 (2005).
    [CrossRef] [PubMed]
  20. G. Statkiewicz, T. Martynkien, W. Urbańczyk, "Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain," Opt. Commun. 241, 339-348 (2004).
    [CrossRef]
  21. R. Stolen, "Phase-matched-stimulated four-photon mixing in silica-fiber waveguides," IEEE J. Quantum Electron. 11, 100-103 (1975).
    [CrossRef]
  22. G. Millot, S. Pitois, P. Tchofo-Dinda, M. Haelterman, "Observation of modulational instability induced by velocity-matched cross-phase modulation in a normally dispersive bimodal fiber," Opt. Lett. 22, 1686-1688 (1997).
    [CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, "Supercontinuum generation in a highly birefringent microstructured fiber," Appl. Phys. Lett. 82, 2197-2199 (2003).
[CrossRef]

IEEE J. Quantum Electron.

K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
[CrossRef]

R. Stolen, "Phase-matched-stimulated four-photon mixing in silica-fiber waveguides," IEEE J. Quantum Electron. 11, 100-103 (1975).
[CrossRef]

J. Opt. Soc. Am. B

Nature

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibers," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Opt. Commun.

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt and J. D. Harvey, "Cross-phase modulational instability in high-birefringence fibers," Opt. Commun. 78, 137-142 (1990).
[CrossRef]

G. Statkiewicz, T. Martynkien, W. Urbańczyk, "Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain," Opt. Commun. 241, 339-348 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

G. Millot, A. Sauter, J. M. Dudley, L. Provino, and R. S. Windeler, "Polarization mode dispersion and vectorial modulational instability in air-silica microstructure fiber," Opt. Lett. 27, 695-697 (2002).
[CrossRef]

A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, "Generation of a broadband single-mode supercontinuum in a conventional dispersion shifted fiber by use of a subnanosecond microchip laser," Opt. Lett. 28, 1820-1823 (2003).
[CrossRef] [PubMed]

A. Zhang and M. S. Demokan, "Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber," Opt. Lett. 30, 2375-2377 (2005).
[CrossRef] [PubMed]

C. J. S. de Matos, J. R. Taylor, and K. P. Hansen, "Continuous-wave, totally fiber integrated optical parametric oscillator using holey fiber," Opt. Lett. 29, 983-985 (2004).
[CrossRef] [PubMed]

A. Y. H.. Chen, G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Widely tunable optical parametric generation in a photonic crystal fiber," Opt. Lett. 30, 762-764 (2005).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
[CrossRef]

S. Murdoch, R. Leonhardt, and J. Harvey, "Polarization modulation instability in weakly birefringent fibers," Opt. Lett. 20, 866 (1995).
[CrossRef] [PubMed]

G. Millot, S. Pitois, P. Tchofo-Dinda, M. Haelterman, "Observation of modulational instability induced by velocity-matched cross-phase modulation in a normally dispersive bimodal fiber," Opt. Lett. 22, 1686-1688 (1997).
[CrossRef]

Phys. Rev. A

J. E. Rothenberg, "Modulational instability for normal dispersion," Phys. Rev. A 42, 682-685 (1990).
[CrossRef] [PubMed]

S. Wabnitz, "Modulational polarization instability of light in a nonlinear birefringent dispersive medium," Phys. Rev. A 38, 2018-2020 (1988).
[CrossRef] [PubMed]

Proc. of LEOS 2005

S. Pitois, A. Tonello, S. Wabnitz, G. Millot, T. Martynkien, W. Urbanczyk, J. Wojcik, A. Locatelli, M. Conforti, "Observation of frequency tunable polarization and modal modulation instability in birefringent holey fiber with triple defects," Proc. of LEOS 2005, 23-27 October 2005, Sydney, Australia, paper PD 1.4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

SEM image of the birefringent holey fiber with triple defect (a), calculated and measured (dots) spectral dependence of phase (B) and group (G) modal birefringence for LP01 and LP11 even modes (b-c).

Fig. 2.
Fig. 2.

Group velocity dispersion (GVD) against wavelength calculated for LP01 and LP11 even modes.

Fig. 3.
Fig. 3.

Experimental set-up : CO2 - MPC: CO2 Multiple-Pass Cell, DVP: Direct Vision Prism, λ/2: half-wave plate, POL: Glan Polarizer, MO: Microscope Objective, HB-PCF: High-Birefringence Holey Fiber

Fig. 4.
Fig. 4.

Calculated (upper curves) and measured polarization sidebands for two pump wavelengths equal respectively to 532 nm (left) and 625 nm (right).

Fig. 5.
Fig. 5.

Theory (upper curves) and experiment with pump at 532 nm: C and D are peaks from VMI, whereas peaks A, B, E, and F result from IMI

Fig. 6.
Fig. 6.

Difference in group effective indices for LP01 and LP11 even modes.

Fig. 7.
Fig. 7.

Simulations of spectra in LP01 (top) and LP11 even modes (middle) with x-(blue curves) and y-polarizations (red curves) and experiment (green curves) with pump at 532 nm parallel to x-(left) or y-(right) fiber axis.

Fig. 8.
Fig. 8.

Calculated and measured (dots and triangles) sideband positions as a function of the pump wavelength.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f VMI = 1 π β y β x β″ y + β″ x

Metrics