Abstract

We demonstrate resonant guiding in a chalcogenide glass photonic crystal membrane. We observe strong resonances in the optical transmission spectra at normal incidence, associated with Fano coupling between free space and guided modes. We obtain good agreement with modeling results based on three-dimensional finite-difference time-domain simulations, and identify the guided modes near the centre of the first Brillouin zone responsible for the main spectral features.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486 (1987).
    [CrossRef] [PubMed]
  2. S. Noda, T. Baba, Roadmap on photonic crystal, (Springer, 2003).
  3. C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm," Electron. Lett. 37, 764 (2001).
    [CrossRef]
  4. S. J. McNab, N. Moll, and Y. A. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," 11, 2927-2939 (2003).
    [CrossRef] [PubMed]
  5. X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, and C. Jouanin, "Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes" Appl. Phys. Lett. 79, 2312 (2001).
    [CrossRef]
  6. H. M. Gibbs, Optical Bistability: Controlling light with light (Academic Press, Orlando, 1985).
  7. D. A. B. Miller, "Optical Switching Devices: Some Basic Concepts," in Optical Computing, ed. B. S. Wherrett and F. A. P. Tooley, 55-70 (Adam Hilger, Bristol, 1989).
  8. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, "Optical delay lines based on optical filters," IEEE J. Quantum Electron. 37, 525 (2001).
    [CrossRef]
  9. Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, "Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching," Opt. Express 12, 5140-5145 (2004).
    [CrossRef] [PubMed]
  10. E. Centeno and D. Felbacq, "Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity," 62, 7683-7686(R) (2000).
    [CrossRef]
  11. M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601(R) (2002).
    [CrossRef]
  12. M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739-2741 (2003).
    [CrossRef]
  13. A. R. Cowan and J. F. Young, "Optical bistability involving photonic crystal microcavities and Fano line shapes," Phys. Rev. E 68, 046606 (2003).
    [CrossRef]
  14. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678-2687 (2005).
    [CrossRef] [PubMed]
  15. F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, "Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal," Appl. Phys. Lett. 85, 1880 (2004).
    [CrossRef]
  16. F. Raineri, C. Cojocaru, R. Raj, P. Monnier, A. Levenson, C. Seassal, X. Letartre, and P. Viktorovitch, "Tuning a two-dimensional photonic crystal resonance via optical carrier injection " Opt. Lett. 30, 010064 (2005).
    [CrossRef]
  17. V. N. Astratov, D. M. Whittaker , I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, "Photonic band-structure effects in the reflectivity of periodically patterned waveguides," Phys. Rev. B 60, 16255 (1999).
    [CrossRef]
  18. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan,"Angular and polarization properties of a photonic crystal slab mirror," Opt. Express 12, 1575-1582 (2004).
    [CrossRef] [PubMed]
  19. U. Fano, "Effects of configuration interaction on intensities and phase shifts," Phys. Rev. 124, 1866-1878 (1961).
    [CrossRef]
  20. D. Freeman, S. Madden, and B. Luther-Davies, "Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam," Opt. Express 13, 3079-3086 (2005).
    [CrossRef] [PubMed]
  21. D. Freeman et al, to be submitted
  22. S. Fan and J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs," Phys. Rev. B 65, 235112 (2002).
    [CrossRef]
  23. T. Ochiai and K. Sakoda, "Dispersion relation and optical transmittance of a hexagonal photonic crystal slab," Phys. Rev. B 63, 125107 (2001).
    [CrossRef]

Appl. Phys. Lett.

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, and C. Jouanin, "Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes" Appl. Phys. Lett. 79, 2312 (2001).
[CrossRef]

M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739-2741 (2003).
[CrossRef]

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, "Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal," Appl. Phys. Lett. 85, 1880 (2004).
[CrossRef]

Electron. Lett

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm," Electron. Lett. 37, 764 (2001).
[CrossRef]

IEEE J. Quantum Electron.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, "Optical delay lines based on optical filters," IEEE J. Quantum Electron. 37, 525 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

F. Raineri, C. Cojocaru, R. Raj, P. Monnier, A. Levenson, C. Seassal, X. Letartre, and P. Viktorovitch, "Tuning a two-dimensional photonic crystal resonance via optical carrier injection " Opt. Lett. 30, 010064 (2005).
[CrossRef]

Phys. Rev.

U. Fano, "Effects of configuration interaction on intensities and phase shifts," Phys. Rev. 124, 1866-1878 (1961).
[CrossRef]

Phys. Rev. B

V. N. Astratov, D. M. Whittaker , I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, "Photonic band-structure effects in the reflectivity of periodically patterned waveguides," Phys. Rev. B 60, 16255 (1999).
[CrossRef]

E. Centeno and D. Felbacq, "Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity," 62, 7683-7686(R) (2000).
[CrossRef]

S. Fan and J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs," Phys. Rev. B 65, 235112 (2002).
[CrossRef]

T. Ochiai and K. Sakoda, "Dispersion relation and optical transmittance of a hexagonal photonic crystal slab," Phys. Rev. B 63, 125107 (2001).
[CrossRef]

Phys. Rev. E

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601(R) (2002).
[CrossRef]

A. R. Cowan and J. F. Young, "Optical bistability involving photonic crystal microcavities and Fano line shapes," Phys. Rev. E 68, 046606 (2003).
[CrossRef]

Phys. Rev. Lett.

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

Other

S. Noda, T. Baba, Roadmap on photonic crystal, (Springer, 2003).

H. M. Gibbs, Optical Bistability: Controlling light with light (Academic Press, Orlando, 1985).

D. A. B. Miller, "Optical Switching Devices: Some Basic Concepts," in Optical Computing, ed. B. S. Wherrett and F. A. P. Tooley, 55-70 (Adam Hilger, Bristol, 1989).

D. Freeman et al, to be submitted

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Electron micrographs of a chalcogenide glass photonic crystal membrane imaged at 0° and 45°. The Au coating creates the visible surface texture.

Fig. 2.
Fig. 2.

Experimental setup used to measure the optical transmission spectrum.

Fig. 3.
Fig. 3.

Experimental optical transmission spectrum on a logarithmic scale. Radius r = 250 nm.

Fig. 4.
Fig. 4.

Experimental and theoretical transmission spectra compared on a linear scale. Radius r = 250nm.

Fig. 5.
Fig. 5.

Photonic band diagram obtained by 3D plane wave calculations along with electric field intensity distributions of the modes responsible for the main Fano resonances. High intensity distribution regions are in red.

Fig. 6.
Fig. 6.

Influence of holes radii on the spectral position of E1b and O1b and their related Qfactor.

Fig. 7.
Fig. 7.

Experimental and theoretical transmission spectra compared on a linear scale. Radius r = 300nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k 0 sin θ = β / / + κ G
ε ( ω ) = ε + Δε a ( ) 2 b ( ) + c

Metrics