Abstract

We present a multifunctional photonic switch that monolithically integrates an InGaAsP/InP quantum well electroabsorption modulator and an InGaAs photodiode as a part of an on-chip, InP optoelectronic circuit. The optical multifunctionality of the switch offers many configurations to allow for different optical network functions on a single chip. Here we experimentally demonstrate GHz-range optical wavelength-converting switching with only ~10 mW of absorbed input optical power, electronically controlled packet switching with a reconfiguration time of <2.5 ns, and optically controlled packet switching in <300 ps.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. L. Mašanovic, V. Lal, J. A. Summers, J. S. Barton, E. J. Skogen, L. G. Rau, L. A. Coldren, and D. J. Blumenthal, "Widely tunable monolithically integrated all-optical wavelength converters in InP," J. Lightwave Technol. 23, 1350-1362 (2005).
    [CrossRef]
  2. J. M. Hutchinson, J. Zheng, J. S. Barton, J. A. Henness, M. L. Mašanovic, M. N. Sysak, L. A. Johansson, D. J. Blumenthal, L. A. Coldren, H. V. Demir, V. A. Sabnis, O. Fidaner, J. S. Harris, and D. A. B. Miller, "Indium Phosphide-based optoelectronic wavelength conversion for high-speed optical networks," Intel Technology Journal 8, 161-171 (2004).
  3. S. Kodama, T. Yoshimatsu, and H. Ito, "500 Gbit/s optical gate monolithically integrating photodiode and electroabsorption modulator," Electron. Lett. 40, 555-556 (2004).
    [CrossRef]
  4. S. J. B. Yoo, "Advanced optical components for next generation photonic networks," Proc. SPIE 5246, 224-234 (2003).
    [CrossRef]
  5. E. S. Awad, P. S. Cho, C. Richardson, N. Moulton, and J. Goldhar, "Optical 3R regeneration using a single EAM for all-optical timing extraction with simultaneous reshaping and wavelength conversion," IEEE Photonics. Technol. Lett. 14, 1378-1380 (2002).
    [CrossRef]
  6. T. Otani, T. Miyazaki, and S. Yamamoto, "Optical 3R regenerator using wavelength converters based on electroabsorption modulator for all-optical network applications," IEEE Photonics. Technol. Lett. 12, 431-433 (2000).
    [CrossRef]
  7. M. Hayashi, H. Tanaka, K. Ohara, T. Otani, and M. Suzuki, "OTDM transmitter using WDM-TDM conversion with an electroabsorption wavelength converter," J. Lightwave Technol. 20, 236-242 (2002).
    [CrossRef]
  8. C. Sato et al., "High-speed waveguide switches for optical packet-switched routers and networks," OFC, paper MF53, Los Angeles, CA, (2004).
    [CrossRef]
  9. H. V. Demir, V. A. Sabnis, J.-F. Zheng, O. Fidaner, J. S. Harris, Jr., and D. A. B. Miller, "Scalable wavelength converting crossbar switches," IEEE Photonics. Technol. Lett. 16, 2305-2307 (2004).
    [CrossRef]
  10. H. V. Demir, V. A. Sabnis, O. Fidaner, J. S. Harris, Jr., D. A. B. Miller, and J. Zheng, "Dual-diode quantum well modulator for C-band wavelength conversion and broadcasting," Opt. Express 12, 310-316 (2004) <a href= http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-310>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-310</a>.
    [CrossRef] [PubMed]
  11. H. V. Demir, V. A. Sabnis, O. Fidaner, J.-F. Zheng, J. S. Harris, Jr., and D. A. B. Miller, ". H. V. Demir, V. A. Sabnis, O. Fidaner, J.-F. Zheng, J. S. Harris, Jr., and D. A. B. Miller, "Multifunctional integrated photonic switches," IEEE J. Sel. Top. Quantum Electron. 11, 86-96 (2005).
    [CrossRef]
  12. O. Fidaner, H. V. Demir, V. A. Sabnis, J. S. Harris, Jr., D. A. B. Miller, and J.-F. Zheng, "Electrically reconfigurable multifunctional integrated phonic switches," The 17th Annual Meeting of the IEEE LEOS Nov. 8-9, 2004. 2, 455 - 456 (2004).
  13. O. Fidaner, H. V. Demir,V. A. Sabnis, J. S. Harris Jr., D. A. B. Miller, and J.-F. Zheng, "Multifunctional integrated photonic switches for nanosecond packet-switched wavelength conversion," Integrated Photonics Research (IPR) (OSA Technical Digest, Optical Society of America, San Diego, CA, 2005).
  14. V. A. Sabnis, H. V. Demir, O. Fidaner, J. S. Harris, Jr., D. A. B. Miller, J.-F. Zheng, N. Li, T.-C. Wu, and Y.-M. Houng. "Optically-switched dual-diode electroabsorption modulators," Integrated Photonics Research (IPR) (OSA Technical Digest, Optical Society of America, Washington, DC, 2003).
  15. H. V. Demir, J.-F. Zheng, V. A. Sabnis, O. Fidaner, J. P. Hanberg, J. S. Harris, Jr., and D. A. B. Miller, "Self-aligning planarization and passivation in the integration of III-V semiconductor devices," IEEE Trans. on Semiconductor Manufacturing 18, 182-189 (2005).
    [CrossRef]
  16. J.-F. Zheng, J. P. Hanberg, H. V. Demir, V. A. Sabnis, O. Fidaner, J. S. Harris, Jr., and D. A. B. Miller, "Novel passivation and planarization in the integration of III-V semiconductor devices," Proceedings of SPIE Photonics West Conference, San Jose, CA (January 24-29, 2004). Paper 5356-9.
  17. V. A. Sabnis, H. V. Demir, O. Fidaner, J. S. Harris, Jr., D. A. B. Miller, J.-F. Zheng, N. Li, T.-C. Wu, H.-T. Chen, and Y.-M. Houng, "Optically-controlled electroabsorption modulators for unconstrained wavelength conversion," Appl. Phys. Lett. 84, 469-471 (2004).
    [CrossRef]

"OFC 2004" (1)

C. Sato et al., "High-speed waveguide switches for optical packet-switched routers and networks," OFC, paper MF53, Los Angeles, CA, (2004).
[CrossRef]

2005 OSA Technical Digest (1)

O. Fidaner, H. V. Demir,V. A. Sabnis, J. S. Harris Jr., D. A. B. Miller, and J.-F. Zheng, "Multifunctional integrated photonic switches for nanosecond packet-switched wavelength conversion," Integrated Photonics Research (IPR) (OSA Technical Digest, Optical Society of America, San Diego, CA, 2005).

Appl. Phys. Lett. (1)

V. A. Sabnis, H. V. Demir, O. Fidaner, J. S. Harris, Jr., D. A. B. Miller, J.-F. Zheng, N. Li, T.-C. Wu, H.-T. Chen, and Y.-M. Houng, "Optically-controlled electroabsorption modulators for unconstrained wavelength conversion," Appl. Phys. Lett. 84, 469-471 (2004).
[CrossRef]

Electron. Lett. (1)

S. Kodama, T. Yoshimatsu, and H. Ito, "500 Gbit/s optical gate monolithically integrating photodiode and electroabsorption modulator," Electron. Lett. 40, 555-556 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron (1)

H. V. Demir, V. A. Sabnis, O. Fidaner, J.-F. Zheng, J. S. Harris, Jr., and D. A. B. Miller, ". H. V. Demir, V. A. Sabnis, O. Fidaner, J.-F. Zheng, J. S. Harris, Jr., and D. A. B. Miller, "Multifunctional integrated photonic switches," IEEE J. Sel. Top. Quantum Electron. 11, 86-96 (2005).
[CrossRef]

IEEE Photonics. Technol. Lett (1)

H. V. Demir, V. A. Sabnis, J.-F. Zheng, O. Fidaner, J. S. Harris, Jr., and D. A. B. Miller, "Scalable wavelength converting crossbar switches," IEEE Photonics. Technol. Lett. 16, 2305-2307 (2004).
[CrossRef]

IEEE Photonics. Technol. Lett. (2)

E. S. Awad, P. S. Cho, C. Richardson, N. Moulton, and J. Goldhar, "Optical 3R regeneration using a single EAM for all-optical timing extraction with simultaneous reshaping and wavelength conversion," IEEE Photonics. Technol. Lett. 14, 1378-1380 (2002).
[CrossRef]

T. Otani, T. Miyazaki, and S. Yamamoto, "Optical 3R regenerator using wavelength converters based on electroabsorption modulator for all-optical network applications," IEEE Photonics. Technol. Lett. 12, 431-433 (2000).
[CrossRef]

IEEE Trans. on Semiconductor Manufacturi (1)

H. V. Demir, J.-F. Zheng, V. A. Sabnis, O. Fidaner, J. P. Hanberg, J. S. Harris, Jr., and D. A. B. Miller, "Self-aligning planarization and passivation in the integration of III-V semiconductor devices," IEEE Trans. on Semiconductor Manufacturing 18, 182-189 (2005).
[CrossRef]

Intel Technology Journal (1)

J. M. Hutchinson, J. Zheng, J. S. Barton, J. A. Henness, M. L. Mašanovic, M. N. Sysak, L. A. Johansson, D. J. Blumenthal, L. A. Coldren, H. V. Demir, V. A. Sabnis, O. Fidaner, J. S. Harris, and D. A. B. Miller, "Indium Phosphide-based optoelectronic wavelength conversion for high-speed optical networks," Intel Technology Journal 8, 161-171 (2004).

J. Lightwave Technol. (2)

Opt. Express (1)

OSA Technical Digest 2003 (1)

V. A. Sabnis, H. V. Demir, O. Fidaner, J. S. Harris, Jr., D. A. B. Miller, J.-F. Zheng, N. Li, T.-C. Wu, and Y.-M. Houng. "Optically-switched dual-diode electroabsorption modulators," Integrated Photonics Research (IPR) (OSA Technical Digest, Optical Society of America, Washington, DC, 2003).

Proc. SPIE (2)

S. J. B. Yoo, "Advanced optical components for next generation photonic networks," Proc. SPIE 5246, 224-234 (2003).
[CrossRef]

J.-F. Zheng, J. P. Hanberg, H. V. Demir, V. A. Sabnis, O. Fidaner, J. S. Harris, Jr., and D. A. B. Miller, "Novel passivation and planarization in the integration of III-V semiconductor devices," Proceedings of SPIE Photonics West Conference, San Jose, CA (January 24-29, 2004). Paper 5356-9.

Other (1)

O. Fidaner, H. V. Demir, V. A. Sabnis, J. S. Harris, Jr., D. A. B. Miller, and J.-F. Zheng, "Electrically reconfigurable multifunctional integrated phonic switches," The 17th Annual Meeting of the IEEE LEOS Nov. 8-9, 2004. 2, 455 - 456 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

A three-dimensional schematic of an integrated photonic switch incorporating a photodiode (PD) and an electroabsorption modulator (EAM). A thin film resistor is also integrated on the chip. There are two electrical voltage inputs (across the biasing pads of the EAM and the PD) and two optical inputs (onto the PD and into the EAM). There is one optical output (from the EAM).

Fig. 2.
Fig. 2.

Simplified circuit diagram of the integrated photonic switch operated in different configurations. (a) Basic optical switching operation: Both the EAM and the PD are reverse biased with a DC signal. Input data stream on the PD is transferred to the output, converting the wavelength, (b) Electrical packet switching: The EAM bias is a signal from the central network management system (CNMS) which enables/disables the switching node. The input data stream is seen at the output only when there is the enabling signal. (c) Optical packet switching: The optical control signal from the CNMS is incident on the PD. The data stream is coupled into the EAM this time, instead of a cw beam. The PD gates the input data stream. (d) Simultaneous optical operations: Optical packet switching and wavelength conversion takes place simultaneously. Both the data and the control signal are incident on the photodiode and the optical input to the EAM is a continuous wave signal. EAM transmission occurs when both PD input signals are high.

Fig. 3.
Fig. 3.

One dimensional arrays of the switch. Only the input for which the corresponding switch is enabled is seen at the output. It is important to rapidly change the enabled switch for better network functionality.

Fig. 4.
Fig. 4.

SEM picture of a fabricated photodiode-modulator switch.

Fig. 5.
Fig. 5.

Eye diagrams of optical outputs from the integrated switch. (a) Optical wavelength conversion (from 1551.7 nm to 1548.5 nm) at 3.5 Gb/s with >10 dB extinction ratio; inset shows the input NRZ eye diagram (50 ps/div horizontal and 185 μW/div vertical; inset: 50 ps/div horizontal and 344 μW/div vertical), (b) Electrical gating for packet switching of 1 Gb/s optical wavelength conversion (from 1551.7 nm to 1535.8 nm) at 62.5 MHz within a reconfiguration time of < 2.5 ns; inset shows the optical input (blue) and the output transient (red) of switch reconfiguration (5 ns/div horizontal and 73 μW/div vertical; inset: 1 ns/div horizontal and 5 8 μW/div vertical), (c) Optical gating for packet switching of 3 Gb/s optical pulse train (@ 1550 nm) with an optical CNMS signal (@ 1551.7 nm) at 187.5 MHz within a reconfiguration time of <300 ps; inset shows the optical data input (blue) and the output transient (red) of switch reconfiguration (1 ns/div horizontal and 270 μW/div vertical; inset: 200 ps/div horizontal and 135 μW/div vertical), and (d) Optical packet switching of 1 Gb/s wavelength conversion (from 1551.7 nm to 1539.2 nm) with an optical CNMS signal (@ 1547.3 nm) at 62.5 MHz within a reconfiguration time of <1 ns; inset shows the output transient (5 ns/div horizontal and 63 μW/div vertical; inset: 200 ps/div horizontal and 63 μW/div vertical).

Metrics