Abstract

The impact of ultra-fast carrier dynamics in semiconductor optical amplifiers (SOAs) on switches based on cross-gain and cross-phase modulation is analyzed theoretically and experimentally. We find that ultra-fast effects lead to additional spectral broadening, which improves the optical signal-to-noise ratio for switches based on an SOA and an optical filter. For such switches, the influence of ultra-fast effects on the so-called nonlinear patterning effect is analyzed for three filter configurations: the asymmetric Mach-Zehnder interferometer (AMZI), a band-pass filter (BPF), and a cascade of an AMZI and a BPF. We conclude that fast carrier dynamics dramatically reduces nonlinear patterning and that the successful high-speed (>100 Gb/s) demonstrations in the literature rely on these effects.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. J. S. Dorren, M. T. Hill, Y. Liu, E. Tangdiongga, M. K. Smit, and G. D. Khoe, "Optical signal processing and telecommunication applications," in OAA Topical Meeting 2005 on CD-ROM, WD1 (2005).
  2. A. Mecozzi, and J. Mørk, "Saturation induced by picosecond pulses in semiconductor optical amplifiers," J. Opt. Soc. Am. B 14, 761 (1997).
    [CrossRef]
  3. J. Mørk, T. W. Berg, M. L. Nielsen, and A. V. Uskov, "The role of fast carrier dynamics in SOA based devices," IEICE Trans. Electron. E87-C, 1126 (2004).
  4. S. Nakamura, Y. Ueno, and K. Tajima, "Femtosecond switching with semiconductor-optical-amplifier-based symmetric Mach-Zehnder-type all-optical switch," Appl. Phys. Lett. 78, 3929 (2001).
    [CrossRef]
  5. J. Mørk, and A. Mecozzi, "Theory of the ultrafast optical response of active semiconductor waveguides," J. Opt. Soc. Am. B 19, 1803 (1996).
    [CrossRef]
  6. A. Mecozzi, and J. Mørk, "Saturation effects in non-degenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers," IEEE J. Sel. Top. Quantum Electron. 3, 1190 (1997).
    [CrossRef]
  7. A. K. Mishra, X. Yang, D. Lenstra, G.-D. Khoe, and H. J. S. Dorren, "Wavelength conversion employing 120 fs optical pulses in an SOA-based nonlinear polarization switch," IEEE J. Sel. Top. Quantum Electron. 10, 1180 (2004).
    [CrossRef]
  8. M. L. Nielsen, and J. Mørk, "Increasing the modulation bandwidth of semiconductor optical amplifier based switches using optical filtering," J. Opt. Soc. Am. B. 21, 1606 (2004).
    [CrossRef]
  9. Y. Ueno, S. Nakamura, H. Hatekeyama, T. Tamanuki, T. Sasaki, and K. Tajima, "168 Gb/s OTDM wavelength conversion using an SMZ-type all-optical switch," in Proceedings of ECOC 2000, Vol. 1,(European Conference on Optical Communications, Munich, Germany, 2000) pp. 13-14.
  10. J. Leuthold, B. Mikkelsen, G. Raybon, C. H. Joyner, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and R. Behringer, "All-optical wavelength conversion between 10 and 100 Gb/s with SOA delayed-interference configuration," Opt. Quantum Electron. 33, 939 (2001).
    [CrossRef]
  11. Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, "160 Gb/s SOA-based wavelength converter assisted by an optical bandpass filter," Technical Digest of OFC 2005, PDP 17, Anaheim, CA. (2005).
    [CrossRef]
  12. M. L. Nielsen, B. Lavigne, and B. Dagens, "Polarity-preserving wavelength conversion at 40 Gb/s using band-pass filtering," IEE Electron. Lett. 39, 1334 (2003).
    [CrossRef]
  13. Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, "80 Gb/s wavelength conversion using semiconductor optical amplifier and optical bandpass filter," IEE Electron. Lett. 41, 487 (2005).
    [CrossRef]
  14. M. L. Nielsen, and J. Mørk, "Bandwidth enhancement of SOA-based switching using optical filtering: theory and experiment," in Proceedings of ECOC 2005, (European Conference on Optical Proceedings, Glasgow, UK 2005) paperTu3.5.7.
  15. M. L. Nielsen, J. Mørk, J. Sakaguchi, R. Suzuki, and Y. Ueno, "Reduction of nonlinear patterning effects in SOA-based all-optical switches using optical filtering," Technical Digest of OFC 2005, (Anaheim, CA., 2005) paper OThE7.
  16. Y. Ueno, S. Nakamura, and K. Tajima, "Nonlinear phase shifts induced by semiconductor optical amplifiers with control pulses at repetition frequencies in the 40-160 GHz range for use in ultrahigh-speed all-optical signal processing," J. Opt. Soc. Am. B 19, 2573 (2002).
    [CrossRef]
  17. M. L. Nielsen, J. Mørk, R.Suzuki, J. Sakaguchi, and Y. Ueno," Theoretical and experimental study of fundamental differences in the noise suppression of high-speed SOA-based all-optical switches," Opt. Express 13, 5080 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-5080">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-5080</a>
    [CrossRef] [PubMed]
  18. M. L. Nielsen, "Experimental and theoretical investigation of semiconductor optical amplifier (SOA) based all-optical switches," Ph. D. thesis, Research Center COM, Technical University of Denmark (2004).
  19. Y. Ueno, "Theoretically predicted nonlinear phase imbalance for delayed-interference signal-wavelength converters (DISC)," Jpn. J. Appl. Phys. 43, L665 (2004).
    [CrossRef]
  20. J. Leuthold, D. M. Maron, S. Cabot, J. J. Jaques, R. Ryf, and C. R.Giles, "All-optical wavelength conversion using a pulse reformatting optical filter," J. Lightwave Technol.. 22, 186 (2004).
    [CrossRef]
  21. G. P. Agrawal, N. and A. Olsson, "Self phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," J. Quantum Electron. 25, 2297 (1989).
    [CrossRef]
  22. P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, "Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers," Opt. Commun. 164, 51 (1999).
    [CrossRef]
  23. A. D. Ellis, A. E. Kelly, D. Nesset, D. Pitcher, D. G. Moodie, and R. Kashyap, "Error-free 100 Gb/s wavelength conversion using grating assisted cross-gain modulation," Electron. Lett. 34, 1958 (1998).
    [CrossRef]
  24. T. Akiyama, K. Kawaguchi, M. Ekawa, M. Sugawara, H. Kuwatsuka, H. Sudo, K. Otsubo, S. Okumura, A. Uetake, F. Futami, and S. Watanabe, "Recent progress in quantum-dot semiconductor optical amplifiers for optical signal processing," in OAA Topical Meeting 2005 on CD-ROM, MB1 (2005)

Appl. Phys. Lett. (1)

S. Nakamura, Y. Ueno, and K. Tajima, "Femtosecond switching with semiconductor-optical-amplifier-based symmetric Mach-Zehnder-type all-optical switch," Appl. Phys. Lett. 78, 3929 (2001).
[CrossRef]

ECOC 2000 (1)

Y. Ueno, S. Nakamura, H. Hatekeyama, T. Tamanuki, T. Sasaki, and K. Tajima, "168 Gb/s OTDM wavelength conversion using an SMZ-type all-optical switch," in Proceedings of ECOC 2000, Vol. 1,(European Conference on Optical Communications, Munich, Germany, 2000) pp. 13-14.

ECOC 2005 (1)

M. L. Nielsen, and J. Mørk, "Bandwidth enhancement of SOA-based switching using optical filtering: theory and experiment," in Proceedings of ECOC 2005, (European Conference on Optical Proceedings, Glasgow, UK 2005) paperTu3.5.7.

Electron. Lett. (1)

A. D. Ellis, A. E. Kelly, D. Nesset, D. Pitcher, D. G. Moodie, and R. Kashyap, "Error-free 100 Gb/s wavelength conversion using grating assisted cross-gain modulation," Electron. Lett. 34, 1958 (1998).
[CrossRef]

IEE Electron. Lett. (2)

M. L. Nielsen, B. Lavigne, and B. Dagens, "Polarity-preserving wavelength conversion at 40 Gb/s using band-pass filtering," IEE Electron. Lett. 39, 1334 (2003).
[CrossRef]

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, "80 Gb/s wavelength conversion using semiconductor optical amplifier and optical bandpass filter," IEE Electron. Lett. 41, 487 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

A. Mecozzi, and J. Mørk, "Saturation effects in non-degenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers," IEEE J. Sel. Top. Quantum Electron. 3, 1190 (1997).
[CrossRef]

A. K. Mishra, X. Yang, D. Lenstra, G.-D. Khoe, and H. J. S. Dorren, "Wavelength conversion employing 120 fs optical pulses in an SOA-based nonlinear polarization switch," IEEE J. Sel. Top. Quantum Electron. 10, 1180 (2004).
[CrossRef]

IEICE Trans. Electron. E87-C (1)

J. Mørk, T. W. Berg, M. L. Nielsen, and A. V. Uskov, "The role of fast carrier dynamics in SOA based devices," IEICE Trans. Electron. E87-C, 1126 (2004).

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (3)

J. Opt. Soc. Am. B. (1)

M. L. Nielsen, and J. Mørk, "Increasing the modulation bandwidth of semiconductor optical amplifier based switches using optical filtering," J. Opt. Soc. Am. B. 21, 1606 (2004).
[CrossRef]

J. Quantum Electron. (1)

G. P. Agrawal, N. and A. Olsson, "Self phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," J. Quantum Electron. 25, 2297 (1989).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Ueno, "Theoretically predicted nonlinear phase imbalance for delayed-interference signal-wavelength converters (DISC)," Jpn. J. Appl. Phys. 43, L665 (2004).
[CrossRef]

OAA Topical Meeting 2005 (2)

H. J. S. Dorren, M. T. Hill, Y. Liu, E. Tangdiongga, M. K. Smit, and G. D. Khoe, "Optical signal processing and telecommunication applications," in OAA Topical Meeting 2005 on CD-ROM, WD1 (2005).

T. Akiyama, K. Kawaguchi, M. Ekawa, M. Sugawara, H. Kuwatsuka, H. Sudo, K. Otsubo, S. Okumura, A. Uetake, F. Futami, and S. Watanabe, "Recent progress in quantum-dot semiconductor optical amplifiers for optical signal processing," in OAA Topical Meeting 2005 on CD-ROM, MB1 (2005)

Opt. Commun. (1)

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, "Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers," Opt. Commun. 164, 51 (1999).
[CrossRef]

Opt. Express (1)

Opt. Quantum Electron. (1)

J. Leuthold, B. Mikkelsen, G. Raybon, C. H. Joyner, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and R. Behringer, "All-optical wavelength conversion between 10 and 100 Gb/s with SOA delayed-interference configuration," Opt. Quantum Electron. 33, 939 (2001).
[CrossRef]

Technical Digest of OFC 2005 (2)

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, "160 Gb/s SOA-based wavelength converter assisted by an optical bandpass filter," Technical Digest of OFC 2005, PDP 17, Anaheim, CA. (2005).
[CrossRef]

M. L. Nielsen, J. Mørk, J. Sakaguchi, R. Suzuki, and Y. Ueno, "Reduction of nonlinear patterning effects in SOA-based all-optical switches using optical filtering," Technical Digest of OFC 2005, (Anaheim, CA., 2005) paper OThE7.

Other (1)

M. L. Nielsen, "Experimental and theoretical investigation of semiconductor optical amplifier (SOA) based all-optical switches," Ph. D. thesis, Research Center COM, Technical University of Denmark (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic of all-optical switch based on a single SOA and an optical filter. HL (ω) is the filter’s field transfer function.

Fig. 2.
Fig. 2.

Experimental setup

Fig. 3.
Fig. 3.

Experimental 105 Gb/s XGM traces for (a) τp = 1.8 ps and (b) τp = 8.0 ps. Simulated traces incl. (solid) and excl. (dashed) ultra-fast dynamics for (c) τp = 1.8 and (d) τp = 8.0.

Fig. 4.
Fig. 4.

(a) Calculated probe phase shift, induced by a 42 GHz pulse train, vs. the ratio ∣E 12/∣E 02 including ultra-fast dynamics, ΔΦ (white circles), excluding ultra-fast dynamics, ΔΦ lin (black triangles), and the analytical result from Eq. (10). (b) Probe phase response vs. time, including (solid curve) and excluding (dashed) ultra-fast effects. Triangular response assumed in Eq. (10) shown in short-dashed line.

Fig. 5.
Fig. 5.

(a) Comparison of normalized probe power spectra for 42 GHz input pulse train: Experimental (solid curve), simulations including (black triangles) and excluding (white squares) ultra-fast effects. (b) Ratio power in first, third, and fifth blue 42 GHz harmonic to the power in the carrier peak vs. input pulse energy. Experimental (black symbols), simulations including (solid curves) and excluding (dashed curves) ultra-fast effects.

Fig. 6.
Fig. 6.

Simulation of (a) SOA gain and (b) probe phase for input control signal “1111000000” with pulse energy of 20 fJ. (c) Corresponding DISC output incl. definition of NLP, and (d) normalized DISC output for AMZI parameters (τ, Φ0) = (2ps,0.988π). Solid curves (dashed curves) correspond to inclusion (exclusion) of ultra-fast effects

Fig. 7.
Fig. 7.

Normalized switched output for input control signal “1111000000” with pulse energy of 17 fJ (dotted), 53 fJ (dashed), and 133 fJ (solid). Simulation (a) excluding and (b) including ultra-fast dynamics, compared to the experimental results in (c).

Fig. 8.
Fig. 8.

Nonlinear patterning at DISC output vs. input pulse energy. Experimental (black dots), simulation including (solid) and excluding (dashed) ultra-fast effects. Simulation for unrealistically large εCH = 7.5·10-23 m 3 is shown in dotted curve.

Fig. 9.
Fig. 9.

Switched waveforms for SOA + detuned 0.9 nm wide BPF, using input control signal “1111000000” with pulse energy of 133 fJ. Filter detuning is 0, -0.7 nm, -1.3 nm, and -1.5 nm from top row to bottom row. First (second) column shows simulated waveforms excluding (including) ultra-fast effects, and third column shows corresponding experimental results.

Fig. 10.
Fig. 10.

(a) Simulated nonlinear patterning (left axis) and switched average power (right axis) vs. detuning of 0.9 nm wide BPF after SOA, for input control signal “1111000000” with pulse energy of 133 fJ. Solid (dashed) curves correspond to including (excluding) ultra-fast effects. Black dots indicate experimental nonlinear patterning. (b) Waveform at the output of AMZI + 2 BPF cascade. The effective FWHM bandwidth and detuning of the 2 BPFs are 2.4 nm and -1.0 nm, respectively.

Tables (1)

Tables Icon

Table 1. Simulation parameters

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

d S k dz = Γ a ( N N tr ) 1 + ε ( S cntr + S probe ) S k
dN dt = I eV N τ sp ν g a ( N N tr ) 1 + ε ( S cntr + S probe ) ( S cntr + S probe )
dN dt = N N 0 τ e ν g a ( N N tr ) 1 + ε S cntr S cntr
d g m t z dt = 1 1 + ε exp [ g m t z ] S t 0
× [ { exp [ g m t z ] 1 } ( ν g a + ε d dt ) S t 0 1 τ e [ g m t z g m 0 ( z ) ]
+ ε { exp [ g m t z ] 1 } S t 0 ]
Φ t z = Φ N t z + Φ CH t z
= 1 2 α N [ g m , lin t z g m , 0 ( z ) ]
+ 1 2 α CH ε CH { exp [ g m t z ] 1 } S pulse t 0
E probe t L = G t L ξ S probe ( 0 ) exp [ t L ]
E F ( t ) = F 1 { H F ( ω ) F [ E probe t L ] }
H AMZ ( ω ) = ½ [ 1 + exp [ j ( ωτ + Φ 0 ) ] ]
H gauss ( ω ) = exp [ 2 ln ( 2 ) ( ω Δ ω Δ ω 3 dB ) 2 ]
E n 2 = 4 ( 2 Δ Φ lin ) 2 sin 2 2 n π Δ Φ lin 2

Metrics