Abstract

Light transmission along dispersive plasmonic gap with varied gap widths and its subwavelength guidance characteristics are numerically investigated over a wide frequency range. Mode numbers for each guided modes of the dispersive plasmonic gaps are properly assigned in order to be in consistency with the parallel plate waveguide composed of the perfect electric conductor. Overall and salient features of the role of the gap widths on the guided propagation characteristics are clearly understood by investigating several dispersion curves of varied gap widths. Cutoff frequency downshifts of the dispersive plasmonic gap compared with the perfect electric conductor based parallel plate waveguides are also observed. Finally, surface plasmon polariton modes having subwavelength guidance capability are described in more detail, which are directly governed by the plasmonic property of the metals. The results are expected to be utilized in designing various potential subwavelength nanophotonic devices.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Focus Issue: Extraordinary Light Transmission Through Sub-Wavelength Structured Surfaces, Opt. Express 12, 3618-3706 (2004).
    [PubMed]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    [CrossRef]
  3. H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944).
    [CrossRef]
  4. C. J. Bouwkamp, "On Bethe's theory of diffraction by small holes," Philips Res. Rep. 5, 321-332 (1950)
  5. C. J. Bouwkamp, "Diffraction theory," Rep. Prog. Phys. 17, 35-100 (1954).
    [CrossRef]
  6. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824- 830 (2003).
    [CrossRef] [PubMed]
  7. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
    [CrossRef]
  8. F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005).
    [CrossRef] [PubMed]
  9. S. A. Maier, "Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides," Opt. Comm. (to be published).
  10. G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005).
    [CrossRef]
  11. H. Shin, P. B. Catrysse, and S. Fan, "Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes," Phys. Rev. B 72, 085436 (2005).
    [CrossRef]
  12. R. Gordon and A. G. Brolo, "Increased cut-off wavelength for a subwavelength hole in a real metal," Opt. Express 13, 1933-1938 (2005).
    [CrossRef] [PubMed]
  13. D. -K. Qing and G. Chen, "Nanoscale optical waveguides with negative dielectric cladding," Phys. Rev. B 71, 153107 (2005).
    [CrossRef]
  14. R. Zia, M. D. Selker, P. B. Catrysse, and M. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A 21, 2442-2446 (2004).
    [CrossRef]
  15. A. J. Lichtenberg and J. R. Woodyard, "Plasma waveguides as low loss structures," J. Appl. Phys. 33, 1976- 1979 (1962).
    [CrossRef]
  16. C. Davis and T. Tamir, "Surface and interface waves in plasma gaps," J. Appl. Phys. 37, 461-462 (1966).
    [CrossRef]
  17. A. A. Oliner and T. Tamir, "Backward waves on isotropic plasma slabs," J. Appl. Phys. 33, 231-233 (1962).
    [CrossRef]
  18. E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969).
    [CrossRef]
  19. T. Takano and J. Hamasaki, "Propagating modes of a metal-clad-dielectric slab waveguide for integrated optics," IEEE J. Quantum Elecron. 8, 206-212 (1972).
    [CrossRef]
  20. K. Nosu and J. Hamasaki, "The influence of the longitudinal plasma wave on the propagation characteristics of a metal-clad-dielectric-slab waveguide," IEEE J. Quantum. Electron. 12, 745-748 (1976).
    [CrossRef]
  21. B. Prade, J. Y. Vinet, and A. Mysyrowicz, "Guided optical waves in planar heterostructures with negative dielectric constant," Phys. Rev. B 44, 13556-13572 (1991).
    [CrossRef]
  22. K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1160 (2003).
    [CrossRef]
  23. B. Wang and G. P. Wang, "Metal heterowaveguides for nanometric focusing of light," Appl. Phys. Lett. 85, 3599-3601 (2004).
    [CrossRef]
  24. G. D'Aguanno, N. Mattiucci, M. Scalora, and M. J. Bloemer, "TE and TM guided modes in an air waveguide with negative-index-material cladding," Phys. Rev. E 71, 046603 (2005).
    [CrossRef]
  25. M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, "Metallic photonic band-gap materials," Phys. Rev. B 52, 11744-11751 (1995).
    [CrossRef]
  26. L. -M. Li, Z. -Q. Zhang, and X. Zhang, "Transmission and absorption properties of two-dimensional metallic photonic-band-gap materials," Phys. Rev. B 58, 15589-15594 (1998).
    [CrossRef]
  27. X. Zhang, "Image resolution depending on slab thickness and object distance in a two-dimensional photoniccrystal- based superlens," Phys. Rev. B 70, 195110 (2004).
    [CrossRef]
  28. X. Zhang, "Absolute negative refraction and imaging of unpolarized electromagnetic waves by twodimensional photonic crystals," Phys. Rev. B 70, 205102 (2004).
    [CrossRef]
  29. X. Zhang and L. -M. Li, "Creating all-angle-negative refraction by using insertion," Appl. Phys. Lett. 86, 121103 (2005).
    [CrossRef]
  30. X. Zhang, "Effect of interface and disorder on the far-field image in a two-dimensional photonic-crystalbased flat lens," Phys. Rev. B 71, 165116 (2005).
    [CrossRef]
  31. X. Zhang, "Subwavelength far-field resolution in a square two-dimensional photonic crystal," Phys. Rev. E 71, 037601 (2005).
    [CrossRef]
  32. X. Zhang, "Tunable non-near-field focus and imaging of an unpolarized electromagnetic wave," Phys. Rev. B 71, 235103 (2005).
    [CrossRef]
  33. Yu. M. Aliev, H. Schlüter, and A. Shivarova, Guided-Wave-Produced Plasmas (Springer-Verlag, Heidelberg, 2000), Chap. 3.
  34. D. H. Staelin, A. W. Morgenthaler, and J. A. Kong, Electromagnetic Waves (Prentice-Hall Inc., New York, 1994), Chap. 7.
  35. W. P. Allis, S. J. Buchsbaum, and A. Bers, Waves in Anisotropic Plasmas (The MIT Press, Cambridge, 1963), Chap. 10.
  36. L. Novotny and C. Hafner, "Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function," Phys. Rev. E 50, 4094-4106 (1994).
    [CrossRef]
  37. A. D. Rakiæ, A. B. Djurišiæ, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optielectronic devices," Appl. Opt. 37, 5271-5283 (1998).
    [CrossRef]
  38. T. Tamir and A. A. Oliner, "The spectrum of electromagnetic waves guided by a plasma layer," Proc. IEEE 51, 317-332 (1963).
    [CrossRef]
  39. V. L. Granatstein, S. P. Schlesinger, A. Vigants, "The open plasmaguide in extremes of magnetic field," IEEE Trans. Antennas Propag. 11, 489-496 (1963).
    [CrossRef]
  40. T. Tamir and S. Palócz, "Surface waves on plasma-clad metal rods," IEEE Trans. Microwave Theory Tech. 12, 189-196 (1964).
    [CrossRef]
  41. P. Tournois and V. Laude, "Negative group velocities in metal-film optical waveguides," Opt. Commun. 137, 41-45 (1997).
    [CrossRef]
  42. K. Y. Kim, J. -H. Lee, Y. K. Cho, and H. -S. Tae, "Electromagnetic wave propagation through doubly dispersive subwavelength metamaterial hole," Opt. Express, 13, 3653-3665 (2005)
    [CrossRef]
  43. I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, "Guided modes in negative-refractive-index waveguides," Phys. Rev. E 67, 057602 (2003).
    [CrossRef]
  44. I. V. Shadrivov, A. A. Sukhorukov, Y. S. Kivshar, A. A. Zharov, A. D. Boardman, and P. Egan, "Nonlinear surface waves in left-handed materials," Phys. Rev. E 69, 016617 (2004).
    [CrossRef]
  45. J. Schelleng, C. Monzon, P. F. Loschialpo, D. W. Forester, and L. N. Medgyesi-Mitschang, "Characteristics of waves guided by a grounded "left-handed" material slab of finite extent," Phys. Rev. E 70, 066606 (2004).
    [CrossRef]
  46. H. -G. Unger, Planar Optical Waveguides and Fibers (Clarendon Press, Oxford, 1977).
  47. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic Press, San Diego, 1991).

Appl. Opt.

Appl. Phys. Lett.

G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1160 (2003).
[CrossRef]

B. Wang and G. P. Wang, "Metal heterowaveguides for nanometric focusing of light," Appl. Phys. Lett. 85, 3599-3601 (2004).
[CrossRef]

X. Zhang and L. -M. Li, "Creating all-angle-negative refraction by using insertion," Appl. Phys. Lett. 86, 121103 (2005).
[CrossRef]

IEEE J. Quantum Electon.

T. Takano and J. Hamasaki, "Propagating modes of a metal-clad-dielectric slab waveguide for integrated optics," IEEE J. Quantum Elecron. 8, 206-212 (1972).
[CrossRef]

IEEE J. Quantum. Electron.

K. Nosu and J. Hamasaki, "The influence of the longitudinal plasma wave on the propagation characteristics of a metal-clad-dielectric-slab waveguide," IEEE J. Quantum. Electron. 12, 745-748 (1976).
[CrossRef]

IEEE Trans. Antennas Propag.

V. L. Granatstein, S. P. Schlesinger, A. Vigants, "The open plasmaguide in extremes of magnetic field," IEEE Trans. Antennas Propag. 11, 489-496 (1963).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

T. Tamir and S. Palócz, "Surface waves on plasma-clad metal rods," IEEE Trans. Microwave Theory Tech. 12, 189-196 (1964).
[CrossRef]

J. Appl. Phys.

A. J. Lichtenberg and J. R. Woodyard, "Plasma waveguides as low loss structures," J. Appl. Phys. 33, 1976- 1979 (1962).
[CrossRef]

C. Davis and T. Tamir, "Surface and interface waves in plasma gaps," J. Appl. Phys. 37, 461-462 (1966).
[CrossRef]

A. A. Oliner and T. Tamir, "Backward waves on isotropic plasma slabs," J. Appl. Phys. 33, 231-233 (1962).
[CrossRef]

J. Opt. Soc. Am. A

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824- 830 (2003).
[CrossRef] [PubMed]

Opt. Comm.

S. A. Maier, "Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides," Opt. Comm. (to be published).

Opt. Commun.

P. Tournois and V. Laude, "Negative group velocities in metal-film optical waveguides," Opt. Commun. 137, 41-45 (1997).
[CrossRef]

Opt. Express

Philips Res. Rep.

C. J. Bouwkamp, "On Bethe's theory of diffraction by small holes," Philips Res. Rep. 5, 321-332 (1950)

Phys. Rev.

H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944).
[CrossRef]

E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969).
[CrossRef]

Phys. Rev. B

D. -K. Qing and G. Chen, "Nanoscale optical waveguides with negative dielectric cladding," Phys. Rev. B 71, 153107 (2005).
[CrossRef]

H. Shin, P. B. Catrysse, and S. Fan, "Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes," Phys. Rev. B 72, 085436 (2005).
[CrossRef]

X. Zhang, "Effect of interface and disorder on the far-field image in a two-dimensional photonic-crystalbased flat lens," Phys. Rev. B 71, 165116 (2005).
[CrossRef]

X. Zhang, "Tunable non-near-field focus and imaging of an unpolarized electromagnetic wave," Phys. Rev. B 71, 235103 (2005).
[CrossRef]

B. Prade, J. Y. Vinet, and A. Mysyrowicz, "Guided optical waves in planar heterostructures with negative dielectric constant," Phys. Rev. B 44, 13556-13572 (1991).
[CrossRef]

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, "Metallic photonic band-gap materials," Phys. Rev. B 52, 11744-11751 (1995).
[CrossRef]

L. -M. Li, Z. -Q. Zhang, and X. Zhang, "Transmission and absorption properties of two-dimensional metallic photonic-band-gap materials," Phys. Rev. B 58, 15589-15594 (1998).
[CrossRef]

X. Zhang, "Image resolution depending on slab thickness and object distance in a two-dimensional photoniccrystal- based superlens," Phys. Rev. B 70, 195110 (2004).
[CrossRef]

X. Zhang, "Absolute negative refraction and imaging of unpolarized electromagnetic waves by twodimensional photonic crystals," Phys. Rev. B 70, 205102 (2004).
[CrossRef]

Phys. Rev. E

G. D'Aguanno, N. Mattiucci, M. Scalora, and M. J. Bloemer, "TE and TM guided modes in an air waveguide with negative-index-material cladding," Phys. Rev. E 71, 046603 (2005).
[CrossRef]

X. Zhang, "Subwavelength far-field resolution in a square two-dimensional photonic crystal," Phys. Rev. E 71, 037601 (2005).
[CrossRef]

L. Novotny and C. Hafner, "Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function," Phys. Rev. E 50, 4094-4106 (1994).
[CrossRef]

I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, "Guided modes in negative-refractive-index waveguides," Phys. Rev. E 67, 057602 (2003).
[CrossRef]

I. V. Shadrivov, A. A. Sukhorukov, Y. S. Kivshar, A. A. Zharov, A. D. Boardman, and P. Egan, "Nonlinear surface waves in left-handed materials," Phys. Rev. E 69, 016617 (2004).
[CrossRef]

J. Schelleng, C. Monzon, P. F. Loschialpo, D. W. Forester, and L. N. Medgyesi-Mitschang, "Characteristics of waves guided by a grounded "left-handed" material slab of finite extent," Phys. Rev. E 70, 066606 (2004).
[CrossRef]

Phys. Rev. Lett.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

Proc. IEEE

T. Tamir and A. A. Oliner, "The spectrum of electromagnetic waves guided by a plasma layer," Proc. IEEE 51, 317-332 (1963).
[CrossRef]

Rep. Prog. Phys.

C. J. Bouwkamp, "Diffraction theory," Rep. Prog. Phys. 17, 35-100 (1954).
[CrossRef]

Other

Yu. M. Aliev, H. Schlüter, and A. Shivarova, Guided-Wave-Produced Plasmas (Springer-Verlag, Heidelberg, 2000), Chap. 3.

D. H. Staelin, A. W. Morgenthaler, and J. A. Kong, Electromagnetic Waves (Prentice-Hall Inc., New York, 1994), Chap. 7.

W. P. Allis, S. J. Buchsbaum, and A. Bers, Waves in Anisotropic Plasmas (The MIT Press, Cambridge, 1963), Chap. 10.

H. -G. Unger, Planar Optical Waveguides and Fibers (Clarendon Press, Oxford, 1977).

D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic Press, San Diego, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic illustration of dispersive plasmonic gap (DPG) geometry and (b) dielectric constant of cladding.

Fig. 2.
Fig. 2.

Dispersion characteristics of DPG waveguides. (a) h = 50nm, (b) h = 25nm, (c) h = 15nm, (d) h = 10nm, (e) h = 5nm, and (f) h = 1nm.

Fig. 3.
Fig. 3.

Dispersion curves for DPG waveguides, plus PEC versions. (a) h = 50nmand (b) h = 25nm . The curves are the same as those shown in Fig. 2, with the addition of dispersion curves for PEC PPWs, represented by dotted and dashed lines. The dispersion curves for the TMm/TEm modes of the PEC PPWs are identical. The arrows depict the decreases in the cutoff frequencies. In (b), 6000 THz is the cutoff frequency for the TM2/TE2 mode.

Fig. 4.
Fig. 4.

Dispersion curves for SPP modes of DPGs. (a) TM0 mode and (b) TM1 mode. The vertical dotted lines represent the position of the critical frequency, i.e., 2545.58 THz. The bifurcation points in the inset are the frequency points where the forward and backward waves meet.

Tables (1)

Tables Icon

Table 1. Characteristic equations for DPGs.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

β ¯ = β k 0 = { 1 ( m π 2 k 0 h ) 2 } 1 / 2

Metrics