Abstract

We report an experimental study of long-range surface plasmon polaritons propagating along metallic wires of sub-micrometer rectangular cross-sections (nanowires) embedded in a dielectric. At telecom wavelengths, optical signals are shown to propagate up to several millimeters along such nanowires. As the wires approach a square cross-section, the guided mode becomes more symmetric and can, for example, be tuned to match closely the mode of a standard single-mode optical fiber. Furthermore, symmetric nanowires are shown to guide both TM and TE polarizations. In order to illustrate the applicability of plasmonic nanowire waveguides to optical circuits, we demonstrate a compact variable optical attenuator consisting of a single nanowire that simultaneously carries light and electrical current.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, "Surface plasmon micro- and nano-optics," J. Microscopy 209, 167-172 (2002).
    [CrossRef]
  2. W.L. Barnes, "Electromagnetic Crystals for Surface Plasmon Polaritons and the Extraction of Light from Emissive Devices," J. Lightwave Technol. 17, 2170-2182 (1999).
    [CrossRef]
  3. J. Homola, S.S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sensors Actuat. B 54, 3-15 (1999).
    [CrossRef]
  4. W.L. Barnes, A. Dereux, and T.W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  5. J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986).
    [CrossRef]
  6. P. Berini, Opt. Lett. 24, 1011-1013 (1999); P. Berini, Phys. Rev. B 61, 10484-10503 (2000).
    [CrossRef]
  7. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, "Experimental observation of plasmonpolariton waves supported by a thin metal film of finite width," Opt. Lett. 25, 844-846 (2000).
    [CrossRef]
  8. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "In-line extinction modulator based on long-range surface plasmon polaritons," Opt. Commun. 244, 455-459 (2005).
    [CrossRef]
  9. S.I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, "Integrated power monitor for long-range surface plasmon polaritons," Opt. Commun. 255, 51-56 (2005).
    [CrossRef]
  10. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, "Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons," Opt. Express 13, 977-984 (2005).
    [CrossRef] [PubMed]
  11. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjær, M. L. Larsen, and S. I. Bozhevolnyi, "Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons," IEEE J. Lightwave Technol. 23, 413-422 (2005).
    [CrossRef]
  12. P. Berini, "Optical Waveguide Structures," US patent number 6,741,782 (<a href="http://www.uspto.gov/">http://www.uspto.gov/</a>).
  13. T. Mizuno, H. Takahashi, T. Kitoh, M. Oguma, T. Kominato, and T. Shibata, "Mach-Zehnder interferometer switch with a high extinction ratio over a wide wavelength range," Opt. Lett. 30, 251-253 (2005).
    [CrossRef] [PubMed]

IEEE J. Lightwave Technol.

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjær, M. L. Larsen, and S. I. Bozhevolnyi, "Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons," IEEE J. Lightwave Technol. 23, 413-422 (2005).
[CrossRef]

J. Lightwave Technol.

J. Microscopy

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, "Surface plasmon micro- and nano-optics," J. Microscopy 209, 167-172 (2002).
[CrossRef]

Nature

W.L. Barnes, A. Dereux, and T.W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Opt. Commun.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "In-line extinction modulator based on long-range surface plasmon polaritons," Opt. Commun. 244, 455-459 (2005).
[CrossRef]

S.I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, "Integrated power monitor for long-range surface plasmon polaritons," Opt. Commun. 255, 51-56 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986).
[CrossRef]

P. Berini, Opt. Lett. 24, 1011-1013 (1999); P. Berini, Phys. Rev. B 61, 10484-10503 (2000).
[CrossRef]

Sensors Actuat. B

J. Homola, S.S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sensors Actuat. B 54, 3-15 (1999).
[CrossRef]

Other

P. Berini, "Optical Waveguide Structures," US patent number 6,741,782 (<a href="http://www.uspto.gov/">http://www.uspto.gov/</a>).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Output facets of nanowire waveguides having different width-to-height aspect ratios. Polarized light is launched into the waveguides with a polarization direction rotated 45° with respect to the TE/TM axes of the waveguides.

Fig. 2.
Fig. 2.

Vertical (left column) and horizontal (right column) mode profiles for TM (top row) and TE (bottom row) polarizations, derived from the images in Fig. 1. For asymmetric waveguides only one polarization is guided while for the symmetric case (aspect ratio close to 1) both TE and TM-polarized modes are observed at the output.

Fig. 3.
Fig. 3.

Propagation loss and coupling loss in nanowire waveguides of different dimensions, derived from a cut-back measurements. Reducing the wire dimensions increases the mode size and reduces the Ohmic loss due to a smaller field-metal overlap.

Fig. 4.
Fig. 4.

Response curves for optical attenuators based on LRSPP nanowire waveguides. Electrical current passes through the waveguide core between the contact pads and results in local heating of the waveguide, gradually reducing its effective index. The inset shows the electrical resistance of the investigated devices.

Metrics