Abstract

Ultrahigh-density data-broadcasting optical interconnects are proposed and experimentally demonstrated using optical near-field interactions between quantum dots, which cannot be driven by far-field light, allowing sub-wavelength device operation, and far-field excitation for global interconnects. The proposed scheme helps to solve interconnection difficulties experienced in nano-scale device arrays since components for individually guiding light from external systems are not required. Combining the broadcasting mechanism with switching and summation architectures will allow nano-scale integration of parallel processing devices.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. International Technology Roadmap for Semiconductors, <a href="http://public.itrs.net/">http://public.itrs.net/</a>
  2. D. A. B. Miller, "Rationale and challenges for optical interconnects to electronic chips," in Proceedings of IEEE 88, 728-749 (2000).
  3. N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, and M. Ishikawa, "Reconfigurable optical interconnections for parallel computing," in Proceedings of IEEE 88, 829-837 (2000).
  4. M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, "Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields," IEEE J. Sel. Top Quantum Electron. 8, 839-862 (2002).
    [CrossRef]
  5. T. Yatsui, M. Kourogi, and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion," Appl. Phys. Lett. 79, 4583-4585 (2001).
    [CrossRef]
  6. J. Takahara, Y. Suguru, T. Hiroaki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997).
    [CrossRef] [PubMed]
  7. W. Nomura, M. Ohtsu, and T. Yatsui, "Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion," Appl. Phys. Lett. 86, 181108-1-3 (2005).
    [CrossRef]
  8. J. W. Goodman, A. R. Dias, and L. M. Woody, "Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms," Opt. Lett. 2, 1-3 (1978).
    [CrossRef] [PubMed]
  9. P. S. Guilfoyle and D. S. McCallum, "High-speed low-energy digital optical processors," Opt. Eng. 35, 436-442 (1996).
    [CrossRef]
  10. B. Li, Y.Qin, X. Cao, and K. M. Sivalingam, "Photonic packet switching: Architecture and performance," Optical Networks Mag. 2, 27-39 (2001).
  11. K. Kobayashi and M. Ohtsu, "Quantum theoretical approach to a near-field optical system," J. Microsc. 194, 249-254 (1999).
    [CrossRef]
  12. K. Kobayashi, S. Sangu, H. Ito, and M. Ohtsu, "Near-field optical potential for a neutral atom," Phys. Rev. A 63, 013806-1-9 (2001).
    [CrossRef]
  13. T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, "Direct observation of optically forbidden energy transfer between CuCl Quantum Cubes via near-field Optical Spectroscopy," Phys. Rev. Lett. 88, 067404-1-4 (2002).
    [CrossRef] [PubMed]
  14. T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, "Demonstration of a nanophotonic switching operation by optical near-field energy transfer," Appl. Phys. Lett. 82, 2957-2959 (2003).
    [CrossRef]
  15. T. Kawazoe, K. Kobayashi, and M. Ohtsu, "The optical nano-fountain: a biomimetic device that concentrates optical energy in a nanometric region," Appl. Phys. Lett. 86, 103102-1-3 (2005).
    [CrossRef]
  16. M. Naruse, T. Miyazaki, F. Kubota, T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, "Nanometric summation architecture using optical near-field interaction between quantum dots," Opt. Lett. 30, 201-203 (2005).
    [CrossRef] [PubMed]
  17. E. A. De Souza, M. C. Nuss, W. H. Knox, and D. A. B. Miller, "Wavelength-division multiplexing with femtosecond pulses," Opt. Lett. 20, 1166-1168 (1995).
    [CrossRef] [PubMed]
  18. N. Sakakura and Y. Masumoto, "Persistent spectral-hole-burning spectroscopy of CuCl quantum cubes," Phys. Rev. B 56, 4051-4055 (1997).
    [CrossRef]
  19. Z. K. Tang, A. Yanase, T. Yasui, Y. Segawa, and K. Cho, "Optical selection rule and oscillator strength of confined exciton system in CuCl thin films," Phys. Rev. Lett. 71, 1431-1434 (1993).
    [CrossRef] [PubMed]
  20. T. Itoh, Y. Iwabuchi, and M. Kataoka, "Study on the size and shape of CuCl microcrystals embedded in alkali-chloride matrices and their correlation with exciton confinement," Phys. Status Solidi B 145, 567-577 (1988).
    [CrossRef]

Appl. Phys. Lett.

T. Yatsui, M. Kourogi, and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion," Appl. Phys. Lett. 79, 4583-4585 (2001).
[CrossRef]

W. Nomura, M. Ohtsu, and T. Yatsui, "Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion," Appl. Phys. Lett. 86, 181108-1-3 (2005).
[CrossRef]

T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, "Demonstration of a nanophotonic switching operation by optical near-field energy transfer," Appl. Phys. Lett. 82, 2957-2959 (2003).
[CrossRef]

T. Kawazoe, K. Kobayashi, and M. Ohtsu, "The optical nano-fountain: a biomimetic device that concentrates optical energy in a nanometric region," Appl. Phys. Lett. 86, 103102-1-3 (2005).
[CrossRef]

IEEE J. Sel. Top Quantum Electron.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, "Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields," IEEE J. Sel. Top Quantum Electron. 8, 839-862 (2002).
[CrossRef]

J. Microsc.

K. Kobayashi and M. Ohtsu, "Quantum theoretical approach to a near-field optical system," J. Microsc. 194, 249-254 (1999).
[CrossRef]

Opt. Eng.

P. S. Guilfoyle and D. S. McCallum, "High-speed low-energy digital optical processors," Opt. Eng. 35, 436-442 (1996).
[CrossRef]

Opt. Lett.

Optical Networks Mag.

B. Li, Y.Qin, X. Cao, and K. M. Sivalingam, "Photonic packet switching: Architecture and performance," Optical Networks Mag. 2, 27-39 (2001).

Phys. Rev. A

K. Kobayashi, S. Sangu, H. Ito, and M. Ohtsu, "Near-field optical potential for a neutral atom," Phys. Rev. A 63, 013806-1-9 (2001).
[CrossRef]

Phys. Rev. B

N. Sakakura and Y. Masumoto, "Persistent spectral-hole-burning spectroscopy of CuCl quantum cubes," Phys. Rev. B 56, 4051-4055 (1997).
[CrossRef]

Phys. Rev. Lett.

Z. K. Tang, A. Yanase, T. Yasui, Y. Segawa, and K. Cho, "Optical selection rule and oscillator strength of confined exciton system in CuCl thin films," Phys. Rev. Lett. 71, 1431-1434 (1993).
[CrossRef] [PubMed]

T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, "Direct observation of optically forbidden energy transfer between CuCl Quantum Cubes via near-field Optical Spectroscopy," Phys. Rev. Lett. 88, 067404-1-4 (2002).
[CrossRef] [PubMed]

Phys. Status Solidi B

T. Itoh, Y. Iwabuchi, and M. Kataoka, "Study on the size and shape of CuCl microcrystals embedded in alkali-chloride matrices and their correlation with exciton confinement," Phys. Status Solidi B 145, 567-577 (1988).
[CrossRef]

Proc. IEEE

D. A. B. Miller, "Rationale and challenges for optical interconnects to electronic chips," in Proceedings of IEEE 88, 728-749 (2000).

Proc. IEEE 2000

N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, and M. Ishikawa, "Reconfigurable optical interconnections for parallel computing," in Proceedings of IEEE 88, 829-837 (2000).

Other

International Technology Roadmap for Semiconductors, <a href="http://public.itrs.net/">http://public.itrs.net/</a>

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Interconnections from macro-scale external systems to sub-wavelength-scale nanophotonic systems. (b) Broadcast interconnects.

Fig. 2.
Fig. 2.

(a) Broadcast-type interconnects to nanophotonic device arrays. (b) Near-field interaction between quantum dots for internal functions. (c) Far-field excitation for identical data input (broadcast) to nanophotonic devices within a diffraction-limit-sized area. (d) Frequency-and-quantum-dot-size diagram.

Fig. 3.
Fig. 3.

Frequency partitioning among external and internal channels, and examples in (a) multiple implementations of 3-dot nanophotonic switches, and (b) 4-dot configuration for sum of products.

Fig. 4.
Fig. 4.

(a) Experimental setup. (b) Three nanophotonic switches (3-dot AND gates) are distributed within 1 μm × 1 μm area in the sample.

Fig. 5.
Fig. 5.

Experimental results. (a, b) Spatial intensity distribution of the output of 3-dot AND gates. (a) Output level: low (1 AND 0 = 0), and (b) output level: high (1 AND 1 = 1). (c) Absorption and photoluminescence spectrum of the sample.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E n x n y n z = E B + ħ 2 π 2 2 M ( L a B ) 2 ( n x 2 + n y 2 + n z 2 )
E 2,1,1 E 1,1,1 = 3 π 2 ħ 2 2 M ( L a B ) 2 ,

Metrics