Abstract

Ultrahigh-density data-broadcasting optical interconnects are proposed and experimentally demonstrated using optical near-field interactions between quantum dots, which cannot be driven by far-field light, allowing sub-wavelength device operation, and far-field excitation for global interconnects. The proposed scheme helps to solve interconnection difficulties experienced in nano-scale device arrays since components for individually guiding light from external systems are not required. Combining the broadcasting mechanism with switching and summation architectures will allow nano-scale integration of parallel processing devices.

© 2006 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. International Technology Roadmap for Semiconductors, <a href="http://public.itrs.net/">http://public.itrs.net/</a>
  2. D. A. B. Miller, "Rationale and challenges for optical interconnects to electronic chips," in Proceedings of IEEE 88, 728-749 (2000).
  3. N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, and M. Ishikawa, "Reconfigurable optical interconnections for parallel computing," in Proceedings of IEEE 88, 829-837 (2000).
  4. M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, "Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields," IEEE J. Sel. Top Quantum Electron. 8, 839-862 (2002).
  5. T. Yatsui, M. Kourogi, and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion," Appl. Phys. Lett. 79, 4583-4585 (2001).
    [CrossRef]
  6. J. Takahara, Y. Suguru, T. Hiroaki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997).
  7. W. Nomura, M. Ohtsu, and T. Yatsui, "Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion," Appl. Phys. Lett. 86, 181108-1-3 (2005).
  8. J. W. Goodman, A. R. Dias, and L. M. Woody, "Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms," Opt. Lett. 2, 1-3 (1978).
  9. P. S. Guilfoyle and D. S. McCallum, "High-speed low-energy digital optical processors," Opt. Eng. 35, 436-442 (1996).
    [CrossRef]
  10. B. Li, Y.Qin, X. Cao, and K. M. Sivalingam, "Photonic packet switching: Architecture and performance," Optical Networks Mag. 2, 27-39 (2001).
  11. K. Kobayashi and M. Ohtsu, "Quantum theoretical approach to a near-field optical system," J. Microsc. 194, 249-254 (1999).
    [CrossRef]
  12. K. Kobayashi, S. Sangu, H. Ito, and M. Ohtsu, "Near-field optical potential for a neutral atom," Phys. Rev. A 63, 013806-1-9 (2001).
  13. T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, "Direct observation of optically forbidden energy transfer between CuCl Quantum Cubes via near-field Optical Spectroscopy," Phys. Rev. Lett. 88, 067404-1-4 (2002).
  14. T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, "Demonstration of a nanophotonic switching operation by optical near-field energy transfer," Appl. Phys. Lett. 82, 2957-2959 (2003).
    [CrossRef]
  15. T. Kawazoe, K. Kobayashi, and M. Ohtsu, "The optical nano-fountain: a biomimetic device that concentrates optical energy in a nanometric region," Appl. Phys. Lett. 86, 103102-1-3 (2005).
  16. M. Naruse, T. Miyazaki, F. Kubota, T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, "Nanometric summation architecture using optical near-field interaction between quantum dots," Opt. Lett. 30, 201-203 (2005).
    [CrossRef]
  17. E. A. De Souza, M. C. Nuss, W. H. Knox, and D. A. B. Miller, "Wavelength-division multiplexing with femtosecond pulses," Opt. Lett. 20, 1166-1168 (1995).
  18. N. Sakakura and Y. Masumoto, "Persistent spectral-hole-burning spectroscopy of CuCl quantum cubes," Phys. Rev. B 56, 4051-4055 (1997).
    [CrossRef]
  19. Z. K. Tang, A. Yanase, T. Yasui, Y. Segawa, and K. Cho, "Optical selection rule and oscillator strength of confined exciton system in CuCl thin films," Phys. Rev. Lett. 71, 1431-1434 (1993).
    [CrossRef]
  20. T. Itoh, Y. Iwabuchi, and M. Kataoka, "Study on the size and shape of CuCl microcrystals embedded in alkali-chloride matrices and their correlation with exciton confinement," Phys. Status Solidi B 145, 567-577 (1988).

Appl. Phys. Lett. (4)

T. Kawazoe, K. Kobayashi, S. Sangu, and M. Ohtsu, "Demonstration of a nanophotonic switching operation by optical near-field energy transfer," Appl. Phys. Lett. 82, 2957-2959 (2003).
[CrossRef]

T. Kawazoe, K. Kobayashi, and M. Ohtsu, "The optical nano-fountain: a biomimetic device that concentrates optical energy in a nanometric region," Appl. Phys. Lett. 86, 103102-1-3 (2005).

T. Yatsui, M. Kourogi, and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion," Appl. Phys. Lett. 79, 4583-4585 (2001).
[CrossRef]

W. Nomura, M. Ohtsu, and T. Yatsui, "Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion," Appl. Phys. Lett. 86, 181108-1-3 (2005).

IEEE J. Sel. Top Quantum Electron. (1)

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, "Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields," IEEE J. Sel. Top Quantum Electron. 8, 839-862 (2002).

J. Microsc. (1)

K. Kobayashi and M. Ohtsu, "Quantum theoretical approach to a near-field optical system," J. Microsc. 194, 249-254 (1999).
[CrossRef]

Opt. Eng. (1)

P. S. Guilfoyle and D. S. McCallum, "High-speed low-energy digital optical processors," Opt. Eng. 35, 436-442 (1996).
[CrossRef]

Opt. Lett. (4)

Optical Networks Mag. (1)

B. Li, Y.Qin, X. Cao, and K. M. Sivalingam, "Photonic packet switching: Architecture and performance," Optical Networks Mag. 2, 27-39 (2001).

Phys. Rev. A (1)

K. Kobayashi, S. Sangu, H. Ito, and M. Ohtsu, "Near-field optical potential for a neutral atom," Phys. Rev. A 63, 013806-1-9 (2001).

Phys. Rev. B (1)

N. Sakakura and Y. Masumoto, "Persistent spectral-hole-burning spectroscopy of CuCl quantum cubes," Phys. Rev. B 56, 4051-4055 (1997).
[CrossRef]

Phys. Rev. Lett. (2)

Z. K. Tang, A. Yanase, T. Yasui, Y. Segawa, and K. Cho, "Optical selection rule and oscillator strength of confined exciton system in CuCl thin films," Phys. Rev. Lett. 71, 1431-1434 (1993).
[CrossRef]

T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, "Direct observation of optically forbidden energy transfer between CuCl Quantum Cubes via near-field Optical Spectroscopy," Phys. Rev. Lett. 88, 067404-1-4 (2002).

Phys. Status Solidi B (1)

T. Itoh, Y. Iwabuchi, and M. Kataoka, "Study on the size and shape of CuCl microcrystals embedded in alkali-chloride matrices and their correlation with exciton confinement," Phys. Status Solidi B 145, 567-577 (1988).

Proc. IEEE (1)

D. A. B. Miller, "Rationale and challenges for optical interconnects to electronic chips," in Proceedings of IEEE 88, 728-749 (2000).

Proc. IEEE 2000 (1)

N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, and M. Ishikawa, "Reconfigurable optical interconnections for parallel computing," in Proceedings of IEEE 88, 829-837 (2000).

Other (1)

International Technology Roadmap for Semiconductors, <a href="http://public.itrs.net/">http://public.itrs.net/</a>

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics