Abstract

Wire waveguides have recently been shown to be valuable for transporting pulsed terahertz radiation. This technique relies on the use of a scattering mechanism for input coupling. A radially polarized surface wave is excited when a linearly polarized terahertz pulse is focused on the gap between the wire waveguide and another metal structure. We calculate the input coupling efficiency using a simulation based on the Finite Element Method (FEM) Additional FEM results indicate that enhanced coupling efficiency can be achieved through the use of a radially symmetric photoconductive antenna. Experimental results confirm that such an antenna can generate terahertz radiation which couples to the radial waveguide mode with greatly improved efficiency.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Mittleman, ed., Sensing with Terahertz Radiation (Springer-Verlag, Heidelberg 2002).
  2. Smith, P. R., D. H. Auston, and M. C. Nuss, "Subpicosecond photoconducting dipole antennas," IEEE J. Quant. Elec. 24, 255-260 (1988).
    [CrossRef]
  3. Exter, M.V. and D. Grischkowsky, "Characterization of an optoelectronic terahertz beam system," IEEE Trans. Microwave Th. Tech. 38, 1684-1691 (1990).
    [CrossRef]
  4. Kawase, K., Y. Ogawa, and Y. Watanabe, "Non-destructive terahertz imaging of illicit drugs using spectral fingerprints," Opt. Express 11, 2549-2554 (2003) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2549">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2549</a>.
    [CrossRef] [PubMed]
  5. Crawley, D., C. Longbottom, V. P. Wallace, B. Cole, D. D. Arnone, and M. Pepper, "Three-dimensional terahertz pulse imaging of dental tissue," J. Biomed. Opt. 8, 303-307 (2003).
    [CrossRef] [PubMed]
  6. Woodward, R. M., V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, "Terahertz pulsed imaging of skin cancer in the time and frequency domain," J. Biol. Phys. 29, 257-261 (2003).
    [CrossRef]
  7. Jacobsen, R. H., D. M. Mittleman, and M. C. Nuss, "Chemical recognition of gases and gas mixtures with terahertz waves," Opt. Lett. 21, 2011-2013 (1996).
    [CrossRef] [PubMed]
  8. Wang, S. and X.-C. Zhang, "Pulsed terahertz tomography," J. Phys. D 37, R1-R36 (2004).
    [CrossRef]
  9. Gallot, G., S. P. Jamison, R. McGowan, and D. Grischkowsky, "Terahertz Waveguides," J. Opt. Soc. Am. B 17, 851-863 (2000).
    [CrossRef]
  10. Harrington, J. A., R. George, P. Pedersen, and E. Mueller, "Hollow polycarbonate waveguides with inner Cucoatings for delivery of terahertz radiation," Opt. Express 12, 5263-5268 (2004) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5263">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5263</a>.
    [CrossRef] [PubMed]
  11. Han, H., H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002).
    [CrossRef]
  12. Goto, M., A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jpn. J. Appl. Phys. 43, L317-L319 (2004).
    [CrossRef]
  13. Mendis, R. and D. Grischkowsky, "Undistorted guided-wave propagation of subpicosecond terahertz pulses," Opt. Lett. 26, 846-848 (2001).
    [CrossRef]
  14. Mendis, R. and D. Grischkowksy, "THz interconnect with low loss and low group velocity dispersion," IEEE Microwave & Wireless Comp. Lett. 11, 444-446 (2001).
    [CrossRef]
  15. Wang, K. and D. M. Mittleman, "Guided propagation of terahertz pulses on metal wires," J. Opt. Soc. Am. B 22, 2001-2008 (2005).
    [CrossRef]
  16. Wang, K. and D. M. Mittleman, "Metal wires for terahertz waveguiding," Nature 432, 376-379 (2004).
    [CrossRef] [PubMed]
  17. Goubau, G., "Surface waves and their application to transmission lines," J. Appl. Phys. 21, 1119-1128 (1950).
    [CrossRef]
  18. Jeon, T.-I., J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, (2005).
    [CrossRef]
  19. Cao, Q. and J. Jahns, "Azimuthally polarized surface plasmons as effective terahertz waveguides," Opt. Express 13, 511-518 (2005) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-511">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-511</a>.
    [CrossRef] [PubMed]
  20. Jin, J., The Finite Element Method in Electromagnetics (John Wiley & Sons, Inc., New York 2002).
  21. FEMLAB. 2004, COMSOL AB: Stockholm, Sweden <a href="http://www.comsol.com">http://www.comsol.com</a>.
  22. Barrett, R., M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H.v.d. Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (SIAM, Philadelphia 1994).
    [CrossRef]
  23. Yang, F., J. R. Sambles, and G. W. Bradberry, "Long-range surface modes supported by thin films," Phys. Rev. B. 44, 5855-5572 (1991).
    [CrossRef]
  24. Rudd, J. V., J. L. Johnson, and D. M. Mittleman, "Cross-polarized angular emission patterns from lenscoupled terahertz antennas," J. Opt. Soc. Am. B 18, 1524-1533 (2001).
    [CrossRef]
  25. Cao, H. and A. Nahata, "Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves," Opt. Express 13, 7028-7034 (2005) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-18-7028">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-18-7028</a>.
    [CrossRef] [PubMed]
  26. Deibel, J. A., M. D. Escarra, and D. M. Mittleman, "Photoconductive terahertz antenna with radial symmetry," Elect. Ltrs. 41, 226-228 (2005).
    [CrossRef]
  27. Fattinger, C. and D. Grischkowsky, "Terahertz beams," Appl. Phys. Lett. 54, 490-492 (1989).
    [CrossRef]
  28. Jepsen, P. and S. R. Keiding, "Radiation patterns from lens-coupled terahertz antennas," Opt. Lett. 20, 807-809 (1995).
    [CrossRef] [PubMed]

Appl. Phys. Lett. (3)

Han, H., H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002).
[CrossRef]

Jeon, T.-I., J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, (2005).
[CrossRef]

Fattinger, C. and D. Grischkowsky, "Terahertz beams," Appl. Phys. Lett. 54, 490-492 (1989).
[CrossRef]

Elect. Ltrs. (1)

Deibel, J. A., M. D. Escarra, and D. M. Mittleman, "Photoconductive terahertz antenna with radial symmetry," Elect. Ltrs. 41, 226-228 (2005).
[CrossRef]

IEEE J. Quant. Elec. (1)

Smith, P. R., D. H. Auston, and M. C. Nuss, "Subpicosecond photoconducting dipole antennas," IEEE J. Quant. Elec. 24, 255-260 (1988).
[CrossRef]

IEEE Microwave & Wireless Comp. Lett. (1)

Mendis, R. and D. Grischkowksy, "THz interconnect with low loss and low group velocity dispersion," IEEE Microwave & Wireless Comp. Lett. 11, 444-446 (2001).
[CrossRef]

IEEE Trans. Microwave Th. Tech. (1)

Exter, M.V. and D. Grischkowsky, "Characterization of an optoelectronic terahertz beam system," IEEE Trans. Microwave Th. Tech. 38, 1684-1691 (1990).
[CrossRef]

J. Appl. Phys. (1)

Goubau, G., "Surface waves and their application to transmission lines," J. Appl. Phys. 21, 1119-1128 (1950).
[CrossRef]

J. Biol. Phys. (1)

Woodward, R. M., V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, "Terahertz pulsed imaging of skin cancer in the time and frequency domain," J. Biol. Phys. 29, 257-261 (2003).
[CrossRef]

J. Biomed. Opt. (1)

Crawley, D., C. Longbottom, V. P. Wallace, B. Cole, D. D. Arnone, and M. Pepper, "Three-dimensional terahertz pulse imaging of dental tissue," J. Biomed. Opt. 8, 303-307 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (3)

J. Phys. D (1)

Wang, S. and X.-C. Zhang, "Pulsed terahertz tomography," J. Phys. D 37, R1-R36 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Goto, M., A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jpn. J. Appl. Phys. 43, L317-L319 (2004).
[CrossRef]

Nature (1)

Wang, K. and D. M. Mittleman, "Metal wires for terahertz waveguiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. B (1)

Yang, F., J. R. Sambles, and G. W. Bradberry, "Long-range surface modes supported by thin films," Phys. Rev. B. 44, 5855-5572 (1991).
[CrossRef]

SIAM, Philadelphia 1994 (1)

Barrett, R., M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H.v.d. Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (SIAM, Philadelphia 1994).
[CrossRef]

Other (3)

Jin, J., The Finite Element Method in Electromagnetics (John Wiley & Sons, Inc., New York 2002).

FEMLAB. 2004, COMSOL AB: Stockholm, Sweden <a href="http://www.comsol.com">http://www.comsol.com</a>.

D. Mittleman, ed., Sensing with Terahertz Radiation (Springer-Verlag, Heidelberg 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) FEM Simulation result of 0.1 THz wave coupling to a wire waveguide using a dual-wire coupling configuration (Ex shown here). The top inset shows a close-up view of the electric field (xz-plane) in the coupling region between the two wires, while the right inset shows the electric field at the end of the wire (xy-plane). Note that the majority of the incident wave scatters into free space, and only 0.4% percent of the incident power is coupled to the guided radial mode. Fig. 1(b) shows the x-component of the electric field along a line 300 microns above the wire and parallel to the wire axis. The inset shows a 0.1 THz sine wave fit to the extracted simulation data. This demonstrates that the simulation is discretized with a mesh density fine enough to resolve the oscillating electric field.

Fig. 2
Fig. 2

(a) Photoconductive antenna with radial symmetry (b) FEM simulation of the power emitted by an “ideal” radial antenna in free space (i.e., no substrate) at 0.5 THz. The antenna sits at the center of the sphere in the xy-plane. The emitted field is zero along the z-axis, as expected for a ‘donut’ mode.

Fig. 3.
Fig. 3.

FEM simulation results of the radial antenna in a typical THz configuration. (a) & (b) Plots of the x and y component of the electric field for the idealized radial antenna. (c) & (d) Plots of the x and y component of the electric field for the actual radial antenna.

Fig. 4.
Fig. 4.

FEM simulation model of radial antenna coupling to a wire waveguide (a) Plot of Ex at the end of a waveguide coupled to an ideal radial antenna. (b) Plot of Ey at the end of a waveguide coupled to an ideal radial antenna. (c) Plot of Ex at the end of a waveguide coupled to an actual radial antenna. (d) Plot of Ey at the end of a waveguide coupled to an actual radial antenna.

Fig. 5.
Fig. 5.

Setup for experimental testing of the radially symmetric terahertz emitter antenna. The emitter was pumped with a free-space beam. A 0.9 mm diameter, 27 cm long wire waveguide was end-coupled to the silicon dome of the emitter. THz radiation was detected at the end of the waveguide by a fiber-coupled LT-GaAs detector sensitive to only the horizontal polarization component.

Fig. 6.
Fig. 6.

The wire waveguide end-coupled to the silicon dome, which is mounted on the opposite side of the GaAs substrate from the radial antenna.

Fig. 7.
Fig. 7.

Time-domain measurements of the terahertz pulse detected 27 cm away from the radial emitter. Measurements have been performed with the wire waveguide both present (7a) and absent (7b). All other experimental parameters are unchanged. The terahertz pulse exhibits a polarity reversal when measured at opposite locations at the end of the waveguide (upper and lower curves in (a)), a hallmark of the guided mode’s radial polarization.

Metrics