Abstract

High-quality buried optical-waveguides were fabricated by reverse-proton-exchange in periodically-poled stoichiometric lithium tantalate. Experimental results show excellent fiber-mode matching, losses below 0.3 dB/cm and almost non-critical conditions for a quasi-phase-matched second-harmonic generation process from telecom wavelengths. The interaction length of 2.5 cm is the highest so far reported for lithium tantalate waveguides.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE Trans. Q. Electron. 30, 2953–2960 (1994).
    [CrossRef]
  2. S. Yi, S. Shin, Y Jin, and Y Son, “Second harmonic generation in a LiTaO3 waveguide domain-inverted by proton exchange and masked heat treatment,” Appl. Phys. Lett. 68, 2493–2495 (1996).
    [CrossRef]
  3. K. Yamamoto, K. Mizuuchi, K. Takeshige, Y. Sasai, and T. Taniuchi, “Characteristics of periodically domain inverted LiNbO3 and LiTaO3 waveguides for second harmonic generation,” J. Appl. Phys. 70, 1947–1951 (1991).
    [CrossRef]
  4. M. Houé and P. D. Towsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D 28, 1747–1763 (1995).
    [CrossRef]
  5. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27, 179–181 (2002).
    [CrossRef]
  6. M. L. Bortz and M. M. Fejer, “Annealed proton-exchanged LiNbO3 waveguides,” Opt. Lett. 16, 1844–1846 (1991).
    [CrossRef] [PubMed]
  7. S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” IEEE J. Lightwave Technol. 5, 700–708 (1987).
    [CrossRef]
  8. M. H. Chou, I.. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-micron-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11, 653–655 (1999).
    [CrossRef]
  9. T. Pertsch, R. Iwanow, R. Schiek, G. I. Stegeman, U. Peschel, F. Lederer, Y. H. Min, and W. Sohler, “Spatial ultrafast switching and frequency conversion in lithium niobate waveguide arrays,” Opt. Lett. 30, 177–179 (2005).
    [CrossRef] [PubMed]
  10. B. Agate, E. U. Rafailov, M. Sibett, S. M. Saltiel, P. Battle, T. Fry, and E. Noonan, “Highly efficient blue-light generation from a compact, diode-pumped femtosecond laser by use of a periodically poled KTP waveguide crystal,” Opt. Lett. 28, 1963–1965 (2003).
    [CrossRef] [PubMed]
  11. K. Mizuuchi, T. Sugita, K. Yamamoto, T. Kawaguchi, T. Yoshino, and M. Imaeda, “Efficient 340-nm light generation by a ridge-type waveguide in a first-order periodically poled MgOLiNbO3,” Opt. Lett. 28, 1344–1346 (2003).
    [CrossRef] [PubMed]
  12. K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett. 73, 3073–3075 (1998).
    [CrossRef]
  13. T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3,” Opt. Lett. 25, 651–653 (2000).
    [CrossRef]
  14. G. Marcus, A. Zigler, D. Eger, A. Bruner, and A. Englander, “Generation of a high-energy ultrawideband chirped source in periodically poled LiTaO3,” J. Opt. Soc. Am. B,  22, 620–622 (2005).
    [CrossRef]
  15. M. Marangoni, R. Osellame, R. Ramponi, S. Takekawa, M. Nakamura, and K. Kitamura, “Reverse-proton-exchange in stoichiometric lithium tantalate,” Opt. Express 12,. 2754–2761 (2004).
    [CrossRef] [PubMed]
  16. S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–27 (2001).
    [CrossRef]
  17. J. Olivares and J. M. Cabrera, “Guided modes with ordinary refractive index in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2468–2471 (1993).
    [CrossRef]
  18. M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive Indices in Undoped and MgO-Doped Near-Stoichiometric LiTaO3 Crystals,” Jpn. J. Appl. Phys. 41, 465–467 (2002).
    [CrossRef]
  19. M. Lobino, M. Marangoni, R. Ramponi, E. Cianci, V. Foglietti, S. Takekawa, M. Nakamura, and K. Kitamura, “Optical-damage free guided second-harmonic-generation in 1% MgO-doped stoichiometric-lithium-tantalate,” Opt. Lett., accepted for publication.
    [PubMed]

2005 (2)

2004 (1)

2003 (2)

2002 (2)

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive Indices in Undoped and MgO-Doped Near-Stoichiometric LiTaO3 Crystals,” Jpn. J. Appl. Phys. 41, 465–467 (2002).
[CrossRef]

K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27, 179–181 (2002).
[CrossRef]

2001 (1)

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–27 (2001).
[CrossRef]

2000 (1)

1999 (1)

M. H. Chou, I.. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-micron-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11, 653–655 (1999).
[CrossRef]

1998 (1)

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett. 73, 3073–3075 (1998).
[CrossRef]

1996 (1)

S. Yi, S. Shin, Y Jin, and Y Son, “Second harmonic generation in a LiTaO3 waveguide domain-inverted by proton exchange and masked heat treatment,” Appl. Phys. Lett. 68, 2493–2495 (1996).
[CrossRef]

1995 (1)

M. Houé and P. D. Towsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D 28, 1747–1763 (1995).
[CrossRef]

1994 (1)

M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE Trans. Q. Electron. 30, 2953–2960 (1994).
[CrossRef]

1993 (1)

J. Olivares and J. M. Cabrera, “Guided modes with ordinary refractive index in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2468–2471 (1993).
[CrossRef]

1991 (2)

K. Yamamoto, K. Mizuuchi, K. Takeshige, Y. Sasai, and T. Taniuchi, “Characteristics of periodically domain inverted LiNbO3 and LiTaO3 waveguides for second harmonic generation,” J. Appl. Phys. 70, 1947–1951 (1991).
[CrossRef]

M. L. Bortz and M. M. Fejer, “Annealed proton-exchanged LiNbO3 waveguides,” Opt. Lett. 16, 1844–1846 (1991).
[CrossRef] [PubMed]

1987 (1)

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” IEEE J. Lightwave Technol. 5, 700–708 (1987).
[CrossRef]

Agate, B.

Baldi, P.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–27 (2001).
[CrossRef]

Battle, P.

Bortz, M. L.

M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE Trans. Q. Electron. 30, 2953–2960 (1994).
[CrossRef]

M. L. Bortz and M. M. Fejer, “Annealed proton-exchanged LiNbO3 waveguides,” Opt. Lett. 16, 1844–1846 (1991).
[CrossRef] [PubMed]

Brener, I..

M. H. Chou, I.. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-micron-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11, 653–655 (1999).
[CrossRef]

Bruner, A.

Cabrera, J. M.

J. Olivares and J. M. Cabrera, “Guided modes with ordinary refractive index in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2468–2471 (1993).
[CrossRef]

Carenco, A.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” IEEE J. Lightwave Technol. 5, 700–708 (1987).
[CrossRef]

Chaban, E. E.

M. H. Chou, I.. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-micron-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11, 653–655 (1999).
[CrossRef]

Chou, M. H.

M. H. Chou, I.. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-micron-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11, 653–655 (1999).
[CrossRef]

Christman, S. B.

M. H. Chou, I.. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-micron-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11, 653–655 (1999).
[CrossRef]

Cianci, E.

M. Lobino, M. Marangoni, R. Ramponi, E. Cianci, V. Foglietti, S. Takekawa, M. Nakamura, and K. Kitamura, “Optical-damage free guided second-harmonic-generation in 1% MgO-doped stoichiometric-lithium-tantalate,” Opt. Lett., accepted for publication.
[PubMed]

Daguet, C.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” IEEE J. Lightwave Technol. 5, 700–708 (1987).
[CrossRef]

De Micheli, M.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–27 (2001).
[CrossRef]

De Riedmatten, H.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–27 (2001).
[CrossRef]

Eger, D.

Englander, A.

Fejer, M. M.

K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27, 179–181 (2002).
[CrossRef]

M. H. Chou, I.. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-micron-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11, 653–655 (1999).
[CrossRef]

M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE Trans. Q. Electron. 30, 2953–2960 (1994).
[CrossRef]

M. L. Bortz and M. M. Fejer, “Annealed proton-exchanged LiNbO3 waveguides,” Opt. Lett. 16, 1844–1846 (1991).
[CrossRef] [PubMed]

Field, S. J.

M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE Trans. Q. Electron. 30, 2953–2960 (1994).
[CrossRef]

Foglietti, V.

M. Lobino, M. Marangoni, R. Ramponi, E. Cianci, V. Foglietti, S. Takekawa, M. Nakamura, and K. Kitamura, “Optical-damage free guided second-harmonic-generation in 1% MgO-doped stoichiometric-lithium-tantalate,” Opt. Lett., accepted for publication.
[PubMed]

Fouchet, S.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” IEEE J. Lightwave Technol. 5, 700–708 (1987).
[CrossRef]

Fry, T.

Fujimura, M.

Furukawa, Y.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive Indices in Undoped and MgO-Doped Near-Stoichiometric LiTaO3 Crystals,” Jpn. J. Appl. Phys. 41, 465–467 (2002).
[CrossRef]

T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3,” Opt. Lett. 25, 651–653 (2000).
[CrossRef]

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett. 73, 3073–3075 (1998).
[CrossRef]

Gisin, N.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–27 (2001).
[CrossRef]

Gopalan, V.

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett. 73, 3073–3075 (1998).
[CrossRef]

Guglielmi, R.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” IEEE J. Lightwave Technol. 5, 700–708 (1987).
[CrossRef]

Hatanaka, T.

Higuchi, S.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive Indices in Undoped and MgO-Doped Near-Stoichiometric LiTaO3 Crystals,” Jpn. J. Appl. Phys. 41, 465–467 (2002).
[CrossRef]

Houé, M.

M. Houé and P. D. Towsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D 28, 1747–1763 (1995).
[CrossRef]

Imaeda, M.

Ito, H.

Iwanow, R.

Jin, Y

S. Yi, S. Shin, Y Jin, and Y Son, “Second harmonic generation in a LiTaO3 waveguide domain-inverted by proton exchange and masked heat treatment,” Appl. Phys. Lett. 68, 2493–2495 (1996).
[CrossRef]

Kawaguchi, T.

Kitamura, K.

M. Marangoni, R. Osellame, R. Ramponi, S. Takekawa, M. Nakamura, and K. Kitamura, “Reverse-proton-exchange in stoichiometric lithium tantalate,” Opt. Express 12,. 2754–2761 (2004).
[CrossRef] [PubMed]

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive Indices in Undoped and MgO-Doped Near-Stoichiometric LiTaO3 Crystals,” Jpn. J. Appl. Phys. 41, 465–467 (2002).
[CrossRef]

T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3,” Opt. Lett. 25, 651–653 (2000).
[CrossRef]

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett. 73, 3073–3075 (1998).
[CrossRef]

M. Lobino, M. Marangoni, R. Ramponi, E. Cianci, V. Foglietti, S. Takekawa, M. Nakamura, and K. Kitamura, “Optical-damage free guided second-harmonic-generation in 1% MgO-doped stoichiometric-lithium-tantalate,” Opt. Lett., accepted for publication.
[PubMed]

Kurz, J. R.

Lederer, F.

Lobino, M.

M. Lobino, M. Marangoni, R. Ramponi, E. Cianci, V. Foglietti, S. Takekawa, M. Nakamura, and K. Kitamura, “Optical-damage free guided second-harmonic-generation in 1% MgO-doped stoichiometric-lithium-tantalate,” Opt. Lett., accepted for publication.
[PubMed]

Marangoni, M.

M. Marangoni, R. Osellame, R. Ramponi, S. Takekawa, M. Nakamura, and K. Kitamura, “Reverse-proton-exchange in stoichiometric lithium tantalate,” Opt. Express 12,. 2754–2761 (2004).
[CrossRef] [PubMed]

M. Lobino, M. Marangoni, R. Ramponi, E. Cianci, V. Foglietti, S. Takekawa, M. Nakamura, and K. Kitamura, “Optical-damage free guided second-harmonic-generation in 1% MgO-doped stoichiometric-lithium-tantalate,” Opt. Lett., accepted for publication.
[PubMed]

Marcus, G.

Min, Y. H.

Mitchell, T. E.

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett. 73, 3073–3075 (1998).
[CrossRef]

Mizuuchi, K.

K. Mizuuchi, T. Sugita, K. Yamamoto, T. Kawaguchi, T. Yoshino, and M. Imaeda, “Efficient 340-nm light generation by a ridge-type waveguide in a first-order periodically poled MgOLiNbO3,” Opt. Lett. 28, 1344–1346 (2003).
[CrossRef] [PubMed]

K. Yamamoto, K. Mizuuchi, K. Takeshige, Y. Sasai, and T. Taniuchi, “Characteristics of periodically domain inverted LiNbO3 and LiTaO3 waveguides for second harmonic generation,” J. Appl. Phys. 70, 1947–1951 (1991).
[CrossRef]

Nakamura, K.

Nakamura, M.

M. Marangoni, R. Osellame, R. Ramponi, S. Takekawa, M. Nakamura, and K. Kitamura, “Reverse-proton-exchange in stoichiometric lithium tantalate,” Opt. Express 12,. 2754–2761 (2004).
[CrossRef] [PubMed]

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive Indices in Undoped and MgO-Doped Near-Stoichiometric LiTaO3 Crystals,” Jpn. J. Appl. Phys. 41, 465–467 (2002).
[CrossRef]

M. Lobino, M. Marangoni, R. Ramponi, E. Cianci, V. Foglietti, S. Takekawa, M. Nakamura, and K. Kitamura, “Optical-damage free guided second-harmonic-generation in 1% MgO-doped stoichiometric-lithium-tantalate,” Opt. Lett., accepted for publication.
[PubMed]

Nam, D. W.

M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE Trans. Q. Electron. 30, 2953–2960 (1994).
[CrossRef]

Niwa, K.

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett. 73, 3073–3075 (1998).
[CrossRef]

Noonan, E.

Olivares, J.

J. Olivares and J. M. Cabrera, “Guided modes with ordinary refractive index in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2468–2471 (1993).
[CrossRef]

Osellame, R.

Ostrowsky, D.B.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–27 (2001).
[CrossRef]

Parameswaran, K. R.

Pertsch, T.

Peschel, U.

Rafailov, E. U.

Ramponi, R.

M. Marangoni, R. Osellame, R. Ramponi, S. Takekawa, M. Nakamura, and K. Kitamura, “Reverse-proton-exchange in stoichiometric lithium tantalate,” Opt. Express 12,. 2754–2761 (2004).
[CrossRef] [PubMed]

M. Lobino, M. Marangoni, R. Ramponi, E. Cianci, V. Foglietti, S. Takekawa, M. Nakamura, and K. Kitamura, “Optical-damage free guided second-harmonic-generation in 1% MgO-doped stoichiometric-lithium-tantalate,” Opt. Lett., accepted for publication.
[PubMed]

Riviere, L.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” IEEE J. Lightwave Technol. 5, 700–708 (1987).
[CrossRef]

Roussev, R. V.

Route, R. K.

Saltiel, S. M.

Sasai, Y.

K. Yamamoto, K. Mizuuchi, K. Takeshige, Y. Sasai, and T. Taniuchi, “Characteristics of periodically domain inverted LiNbO3 and LiTaO3 waveguides for second harmonic generation,” J. Appl. Phys. 70, 1947–1951 (1991).
[CrossRef]

Schiek, R.

Shin, S.

S. Yi, S. Shin, Y Jin, and Y Son, “Second harmonic generation in a LiTaO3 waveguide domain-inverted by proton exchange and masked heat treatment,” Appl. Phys. Lett. 68, 2493–2495 (1996).
[CrossRef]

Sibett, M.

Sohler, W.

Son, Y

S. Yi, S. Shin, Y Jin, and Y Son, “Second harmonic generation in a LiTaO3 waveguide domain-inverted by proton exchange and masked heat treatment,” Appl. Phys. Lett. 68, 2493–2495 (1996).
[CrossRef]

Stegeman, G. I.

Sugita, T.

Takekawa, S.

M. Marangoni, R. Osellame, R. Ramponi, S. Takekawa, M. Nakamura, and K. Kitamura, “Reverse-proton-exchange in stoichiometric lithium tantalate,” Opt. Express 12,. 2754–2761 (2004).
[CrossRef] [PubMed]

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive Indices in Undoped and MgO-Doped Near-Stoichiometric LiTaO3 Crystals,” Jpn. J. Appl. Phys. 41, 465–467 (2002).
[CrossRef]

M. Lobino, M. Marangoni, R. Ramponi, E. Cianci, V. Foglietti, S. Takekawa, M. Nakamura, and K. Kitamura, “Optical-damage free guided second-harmonic-generation in 1% MgO-doped stoichiometric-lithium-tantalate,” Opt. Lett., accepted for publication.
[PubMed]

Takeshige, K.

K. Yamamoto, K. Mizuuchi, K. Takeshige, Y. Sasai, and T. Taniuchi, “Characteristics of periodically domain inverted LiNbO3 and LiTaO3 waveguides for second harmonic generation,” J. Appl. Phys. 70, 1947–1951 (1991).
[CrossRef]

Taniuchi, T.

T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3,” Opt. Lett. 25, 651–653 (2000).
[CrossRef]

K. Yamamoto, K. Mizuuchi, K. Takeshige, Y. Sasai, and T. Taniuchi, “Characteristics of periodically domain inverted LiNbO3 and LiTaO3 waveguides for second harmonic generation,” J. Appl. Phys. 70, 1947–1951 (1991).
[CrossRef]

Tanzilli, S.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–27 (2001).
[CrossRef]

Terabe, K.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive Indices in Undoped and MgO-Doped Near-Stoichiometric LiTaO3 Crystals,” Jpn. J. Appl. Phys. 41, 465–467 (2002).
[CrossRef]

Tittel, W.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–27 (2001).
[CrossRef]

Towsend, P. D.

M. Houé and P. D. Towsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D 28, 1747–1763 (1995).
[CrossRef]

Waarts, R. G.

M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE Trans. Q. Electron. 30, 2953–2960 (1994).
[CrossRef]

Welch, D. F.

M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE Trans. Q. Electron. 30, 2953–2960 (1994).
[CrossRef]

Yamamoto, K.

K. Mizuuchi, T. Sugita, K. Yamamoto, T. Kawaguchi, T. Yoshino, and M. Imaeda, “Efficient 340-nm light generation by a ridge-type waveguide in a first-order periodically poled MgOLiNbO3,” Opt. Lett. 28, 1344–1346 (2003).
[CrossRef] [PubMed]

K. Yamamoto, K. Mizuuchi, K. Takeshige, Y. Sasai, and T. Taniuchi, “Characteristics of periodically domain inverted LiNbO3 and LiTaO3 waveguides for second harmonic generation,” J. Appl. Phys. 70, 1947–1951 (1991).
[CrossRef]

Yi, S.

S. Yi, S. Shin, Y Jin, and Y Son, “Second harmonic generation in a LiTaO3 waveguide domain-inverted by proton exchange and masked heat treatment,” Appl. Phys. Lett. 68, 2493–2495 (1996).
[CrossRef]

Yoshino, T.

Zbinden, H.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–27 (2001).
[CrossRef]

Zigler, A.

Appl. Phys. Lett. (3)

J. Olivares and J. M. Cabrera, “Guided modes with ordinary refractive index in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2468–2471 (1993).
[CrossRef]

S. Yi, S. Shin, Y Jin, and Y Son, “Second harmonic generation in a LiTaO3 waveguide domain-inverted by proton exchange and masked heat treatment,” Appl. Phys. Lett. 68, 2493–2495 (1996).
[CrossRef]

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett. 73, 3073–3075 (1998).
[CrossRef]

Electron. Lett. (1)

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–27 (2001).
[CrossRef]

IEEE J. Lightwave Technol. (1)

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” IEEE J. Lightwave Technol. 5, 700–708 (1987).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

M. H. Chou, I.. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-micron-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11, 653–655 (1999).
[CrossRef]

IEEE Trans. Q. Electron. (1)

M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE Trans. Q. Electron. 30, 2953–2960 (1994).
[CrossRef]

J. Appl. Phys. (1)

K. Yamamoto, K. Mizuuchi, K. Takeshige, Y. Sasai, and T. Taniuchi, “Characteristics of periodically domain inverted LiNbO3 and LiTaO3 waveguides for second harmonic generation,” J. Appl. Phys. 70, 1947–1951 (1991).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

M. Houé and P. D. Towsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D 28, 1747–1763 (1995).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive Indices in Undoped and MgO-Doped Near-Stoichiometric LiTaO3 Crystals,” Jpn. J. Appl. Phys. 41, 465–467 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (7)

T. Pertsch, R. Iwanow, R. Schiek, G. I. Stegeman, U. Peschel, F. Lederer, Y. H. Min, and W. Sohler, “Spatial ultrafast switching and frequency conversion in lithium niobate waveguide arrays,” Opt. Lett. 30, 177–179 (2005).
[CrossRef] [PubMed]

M. Lobino, M. Marangoni, R. Ramponi, E. Cianci, V. Foglietti, S. Takekawa, M. Nakamura, and K. Kitamura, “Optical-damage free guided second-harmonic-generation in 1% MgO-doped stoichiometric-lithium-tantalate,” Opt. Lett., accepted for publication.
[PubMed]

T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3,” Opt. Lett. 25, 651–653 (2000).
[CrossRef]

M. L. Bortz and M. M. Fejer, “Annealed proton-exchanged LiNbO3 waveguides,” Opt. Lett. 16, 1844–1846 (1991).
[CrossRef] [PubMed]

K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27, 179–181 (2002).
[CrossRef]

K. Mizuuchi, T. Sugita, K. Yamamoto, T. Kawaguchi, T. Yoshino, and M. Imaeda, “Efficient 340-nm light generation by a ridge-type waveguide in a first-order periodically poled MgOLiNbO3,” Opt. Lett. 28, 1344–1346 (2003).
[CrossRef] [PubMed]

B. Agate, E. U. Rafailov, M. Sibett, S. M. Saltiel, P. Battle, T. Fry, and E. Noonan, “Highly efficient blue-light generation from a compact, diode-pumped femtosecond laser by use of a periodically poled KTP waveguide crystal,” Opt. Lett. 28, 1963–1965 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Refractive index profile of the waveguide after proton-exchange (a), annealing (b) and reverse-exchange (c).

Fig. 2.
Fig. 2.

Intensity profile of the fundamental mode at λ=1.55μm. Top and right boxes report respectively the horizontal and vertical cross-sections of the waveguide mode (solid lines) as compared to that of a fiber (dashed line).

Fig. 3
Fig. 3

Second harmonic generation efficiency normalized to the input pump power as a function of wavelength. The curve refers to a 10 μm wide channel and to a Λ = 18.3 μm poling period.

Fig. 4
Fig. 4

Phase matching wavelength versus channel width.

Fig. 5
Fig. 5

Intensity profile of the second harmonic mode together with its horizontal (top box) and vertical (right box) cross-sections

Metrics