Abstract

A white light on-axis digital holographic microscopy based on spectral phase shifting is described. We show experimentally that the spectral phase shifting based on-axis digital holographic microscopy can be used as an alternative to the PZT based phase shifting digital holographic microscopy. The proposed spectral phase shifting approach can provide a speckle-free capability since it employs the partial coherent source produced by combining a white light source and a spectral tunable filter. Another benefit of the proposed white light on-axis digital holographic microscopic system stemmed from spectral phase shifting approach is in the capability of providing a full color 3-D spectral section imaging.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. W. Lohmann, "How to make computer holograms: Development in holography," Seminar Proc. SPIE, 43-49 (1971).
  2. U. Schnars and W. Juptner, "Direct recording of holograms by a CCD target and numerical reconstruction," Appl. Opt. 33, 179-181 (1994).
    [CrossRef] [PubMed]
  3. E. Cuche, F. Bevilacqua and C. Depeursinge, "Digital holography for quantitative phase-contrast imaging," Opt. Lett. 24, 291-293 (1999).
    [CrossRef]
  4. Y. Takaki, H Kawai, and H. Ohzu, "Hybrid holographic microscopy free of conjugate and zero-order images," Appl. Opt. 38, 4990-4996 (1999).
    [CrossRef]
  5. T. M. Kreis, W. P. O. Juptner, "Suppression of the dc term in digital holography," Opt. Eng. 36, 2357-2360 (1997).
    [CrossRef]
  6. N. Demoli, J. Mestrovic, and I. Sovic, "Subtraction digital holography," Appl. Opt. 42, 798-804 (2003).
    [CrossRef] [PubMed]
  7. Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, "Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm," Opt. Express 11, 3234-3241 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3234">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3234</a>.
    [CrossRef] [PubMed]
  8. I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268-1270 (1997).
    [CrossRef] [PubMed]
  9. T. Zhang and I. Yamaguchi, "Three-dimensional microscopy with phase-shifting digital holography," Opt. Lett. 23, 1221-1223 (1998).
    [CrossRef]
  10. F. Dubois, L. Joannes and J. Legros, "Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence," Appl. Opt. 38, 7085-7094 (1999).
    [CrossRef]
  11. Y. Ishii, J. Chen, and K. Murata, "Digital phase-measuring interferometry with a tunable laser diode," Opt. Lett. 12, 233-235 (1988).
    [CrossRef]
  12. F. Le Clerc, L. Collet, and M. Gross, "Numerical heterodyne holography with two-dimensional photodetector arrays," Opt. Lett. 25, 716-718 (2000).
    [CrossRef]
  13. G. Pedrini, and H. J. Tiziani, "Short-coherence digital microscopy by use of a lensless holographic imaging system," Appl. Opt. 41, 4489-4496 (2002).
    [CrossRef] [PubMed]
  14. D. Kim and S. Kim, "Direct spectral phase calculation for dispersive interferometric thickness profilometry" Opt. Express 12, 5117-5124 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5117">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5117</a>.
    [CrossRef] [PubMed]
  15. M. Takeda, and H. Yamamoto, "Fourier-transform speckle profilometry: three dimensional shape measurements of diffuse objects with large height steps and/or spatially isolated surfaces," Appl. Opt. 33, 7829-7837 (1994).
    [CrossRef] [PubMed]
  16. I. Yamaguchi, "Surface tomography by wavelength scanning interferometry," Opt. Eng. 39, 40-46 (2000).
    [CrossRef]

Appl. Opt.

Opt. Eng.

I. Yamaguchi, "Surface tomography by wavelength scanning interferometry," Opt. Eng. 39, 40-46 (2000).
[CrossRef]

T. M. Kreis, W. P. O. Juptner, "Suppression of the dc term in digital holography," Opt. Eng. 36, 2357-2360 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Seminar Proc. SPIE 1971

A. W. Lohmann, "How to make computer holograms: Development in holography," Seminar Proc. SPIE, 43-49 (1971).

Supplementary Material (2)

» Media 1: AVI (1153 KB)     
» Media 2: AVI (651 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Coordinates used for the spectral phase shifting based white light on-axis digital holographic microscopy.

Fig. 2.
Fig. 2.

Schematic diagram of the proposed AOTF based white light on-axis digital holographic microscopic system.

Fig. 3.
Fig. 3.

Movie (1.1M) of the reconstruction result of the white light on-axis digital holographic microscopy for d=1 mm: (a) defocused image and (b) reconstructed focused image of micro patterned object. [Media 1]

Fig. 4.
Fig. 4.

Movie (0.7M) of the reconstruction result of the white light on-axis digital holographic microscopy for d= 10 mm: (a) defocused image and (b) reconstructed focused image of micro patterned object. [Media 2]

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I x y k = O x y k 2 + R x y k 2 + O x y k R * x y k + O * x y k R x y k
= [ O x y k 2 + R x y k 2 ] { 1 + 2 O x y k R x y k O x y k 2 + R x y k 2 cos [ ϕ x y k + 2 k h 0 ] }
I x y k = [ O x y k 2 + R x y k 2 ] { 1 + 2 O x y k R x y k O x y k 2 + R x y k 2 cos [ ϕ ( x , y ) + 2 h 0 k c + 2 h 0 δk ] }
I 1 ( x , y ) = i 0 ( x , y ) { 1 + γ ( x , y ) cos [ ϕ x y + 2 h 0 k c 2 h 0 ( 2 Δ k ) ] }
I 2 ( x , y ) = i 0 ( x , y ) { 1 + γ ( x , y ) cos [ ϕ x y + 2 h 0 k c 2 h 0 Δ k ] }
I 3 ( x , y ) = i 0 ( x , y ) { 1 + γ ( x , y ) cos [ ϕ x y + 2 h 0 k c ] }
I 4 ( x , y ) = i 0 ( x , y ) { 1 + γ ( x , y ) cos [ ϕ x y + 2 h 0 k c + 2 h 0 Δ k ] }
I 5 ( x , y ) = i 0 ( x , y ) { 1 + γ ( x , y ) cos [ ϕ x y + 2 h 0 k c + 2 h 0 ( 2 Δ k ) ] }
ϕ x y = tan 1 [ 1 cos ( 4 Δ k h 0 ) sin ( 2 Δ k h 0 ) ( I 2 I 4 2 I 3 I 5 I 1 ) ] 2 h 0 k c
i 0 γ ( x , y ) = [ 2 ( I 2 I 4 ) ] 2 + ( 2 I 3 I 5 I 1 ) 2 4 I 0
u 0 ( x ´ , y ´ ) = exp ( ikd ) idλ exp [ ik 2 d ( x ´ 2 + y ´ 2 ) ] × [ x , y ± 1 exp [ ik 2 d ( x 2 + y 2 ) ] u i ( x , y ) ] × ( x ´ λd , y ´ λd )
[ x , y ± 1 f α β ] η ξ = exp [ 2 i π ( αη + βξ ) ] f ( α , β ) dαdβ

Metrics