Abstract

A dynamic closed-loop method for focus tracking using a spatial light modulator and a deformable membrane mirror within a confocal microscope is described. We report that it is possible to track defocus over a distance of up to 80 μm with an RMS precision of 57 nm. For demonstration purposes we concentrate on defocus, although in principle the method applies to any wavefront shape or aberration that can be successfully reproduced by the deformable membrane mirror and spatial light modulator, for example, spherical aberration.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Girkin, “Topical Review: Optical physics enables advances in multiphoton imaging,” J. Phys. D: App. Phys. 36, R250–R258 (2003).
    [CrossRef]
  2. S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
    [CrossRef]
  3. M. Schwertner, M. J. Booth, and T. Wilson, “Characterizing specimen induced aberrations for high NA adaptive optical microscopy,” Opt. Express 12, 6540–6550 (2004).
    [CrossRef] [PubMed]
  4. G. Vdovin and P. M. Sarro, “Flexible mirror micromachined in silicon,” App. Opt. 34, 2968–2972 (1995).
    [CrossRef]
  5. http://www.holoeye.com/slm_technology.html
  6. http://sales.hamamatsu.com/en/products/electron-tube-division/detectors/spatial-light-modulator.php
  7. R. K Tyson, Principles of adaptive optics. (Academic Press1998), Chaps 3, 4.
  8. P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123–1130 (2003).
    [CrossRef] [PubMed]
  9. M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” PNAS 99, 5788–5792 (2002).
    [CrossRef] [PubMed]
  10. L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002).
    [CrossRef] [PubMed]
  11. A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the Optimisation Algorithms used in the implementation of Adaptive Optics in Confocal and Multiphoton Microscopy,” Microsc. Res. and Tech. 67, 36–44 (2005).
    [CrossRef]
  12. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
    [CrossRef]
  13. J. Leach and M. J. Padgett, “Observation of chromatic effects near a white-light vortex,” New J. Phys. 5, 154.1–154.7 (2003).
    [CrossRef]
  14. M. T. Gruneisen, R. C. Dymale, J. R. Rotgé, L. F. DeSandre, and D. L. Lubin, “Wavelength-dependant characteristics of a telescope system with diffractive wavefront compensation,” Opt. Eng. 44, 068002 (2005)
    [CrossRef]
  15. E. Dalimier and C. Dainty, “Comparative analysis of deformable mirrors for ocular adaptive optics,” Opt. Express 13, 4275–4285 (2005).http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-2005.
    [CrossRef] [PubMed]
  16. V. N. Mahajan, “Zernike Circle Polynomials and Optical Aberrations of Systems with circular pupils,” Eng. & Lab. Notes, in Opt. & Phot. News 5, S–12–S–24 (1994).
  17. R. Juškaitis and T. Wilson, “Imaging in reciprocal fibre-optic based confocal scanning microscopes,” Opt. Comm. 92, 315–325 (1992).
    [CrossRef]
  18. M. A. A. Neil, M. J. Booth, and T. Wilson, “New model wave-front sensor: a theoretical analysis,” J. Opt. Soc. Am. A 16, 1098–1107 (2000).
    [CrossRef]

2005 (3)

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the Optimisation Algorithms used in the implementation of Adaptive Optics in Confocal and Multiphoton Microscopy,” Microsc. Res. and Tech. 67, 36–44 (2005).
[CrossRef]

M. T. Gruneisen, R. C. Dymale, J. R. Rotgé, L. F. DeSandre, and D. L. Lubin, “Wavelength-dependant characteristics of a telescope system with diffractive wavefront compensation,” Opt. Eng. 44, 068002 (2005)
[CrossRef]

E. Dalimier and C. Dainty, “Comparative analysis of deformable mirrors for ocular adaptive optics,” Opt. Express 13, 4275–4285 (2005).http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-2005.
[CrossRef] [PubMed]

2004 (1)

2003 (3)

J. M. Girkin, “Topical Review: Optical physics enables advances in multiphoton imaging,” J. Phys. D: App. Phys. 36, R250–R258 (2003).
[CrossRef]

P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123–1130 (2003).
[CrossRef] [PubMed]

J. Leach and M. J. Padgett, “Observation of chromatic effects near a white-light vortex,” New J. Phys. 5, 154.1–154.7 (2003).
[CrossRef]

2002 (2)

M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” PNAS 99, 5788–5792 (2002).
[CrossRef] [PubMed]

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002).
[CrossRef] [PubMed]

2000 (2)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
[CrossRef]

M. A. A. Neil, M. J. Booth, and T. Wilson, “New model wave-front sensor: a theoretical analysis,” J. Opt. Soc. Am. A 16, 1098–1107 (2000).
[CrossRef]

1995 (1)

G. Vdovin and P. M. Sarro, “Flexible mirror micromachined in silicon,” App. Opt. 34, 2968–2972 (1995).
[CrossRef]

1994 (1)

V. N. Mahajan, “Zernike Circle Polynomials and Optical Aberrations of Systems with circular pupils,” Eng. & Lab. Notes, in Opt. & Phot. News 5, S–12–S–24 (1994).

1993 (1)

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
[CrossRef]

1992 (1)

R. Juškaitis and T. Wilson, “Imaging in reciprocal fibre-optic based confocal scanning microscopes,” Opt. Comm. 92, 315–325 (1992).
[CrossRef]

Albert, O.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002).
[CrossRef] [PubMed]

Booth, M. J.

M. Schwertner, M. J. Booth, and T. Wilson, “Characterizing specimen induced aberrations for high NA adaptive optical microscopy,” Opt. Express 12, 6540–6550 (2004).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” PNAS 99, 5788–5792 (2002).
[CrossRef] [PubMed]

M. A. A. Neil, M. J. Booth, and T. Wilson, “New model wave-front sensor: a theoretical analysis,” J. Opt. Soc. Am. A 16, 1098–1107 (2000).
[CrossRef]

Burns, D.

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the Optimisation Algorithms used in the implementation of Adaptive Optics in Confocal and Multiphoton Microscopy,” Microsc. Res. and Tech. 67, 36–44 (2005).
[CrossRef]

P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123–1130 (2003).
[CrossRef] [PubMed]

Cremer, C.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
[CrossRef]

Dainty, C.

Dalimier, E.

DeSandre, L. F.

M. T. Gruneisen, R. C. Dymale, J. R. Rotgé, L. F. DeSandre, and D. L. Lubin, “Wavelength-dependant characteristics of a telescope system with diffractive wavefront compensation,” Opt. Eng. 44, 068002 (2005)
[CrossRef]

Dymale, R. C.

M. T. Gruneisen, R. C. Dymale, J. R. Rotgé, L. F. DeSandre, and D. L. Lubin, “Wavelength-dependant characteristics of a telescope system with diffractive wavefront compensation,” Opt. Eng. 44, 068002 (2005)
[CrossRef]

Girkin, J. M.

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the Optimisation Algorithms used in the implementation of Adaptive Optics in Confocal and Multiphoton Microscopy,” Microsc. Res. and Tech. 67, 36–44 (2005).
[CrossRef]

J. M. Girkin, “Topical Review: Optical physics enables advances in multiphoton imaging,” J. Phys. D: App. Phys. 36, R250–R258 (2003).
[CrossRef]

P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123–1130 (2003).
[CrossRef] [PubMed]

Gruneisen, M. T.

M. T. Gruneisen, R. C. Dymale, J. R. Rotgé, L. F. DeSandre, and D. L. Lubin, “Wavelength-dependant characteristics of a telescope system with diffractive wavefront compensation,” Opt. Eng. 44, 068002 (2005)
[CrossRef]

Haist, T.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
[CrossRef]

Hell, S.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
[CrossRef]

Juškaitis, R.

M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” PNAS 99, 5788–5792 (2002).
[CrossRef] [PubMed]

R. Juškaitis and T. Wilson, “Imaging in reciprocal fibre-optic based confocal scanning microscopes,” Opt. Comm. 92, 315–325 (1992).
[CrossRef]

Leach, J.

J. Leach and M. J. Padgett, “Observation of chromatic effects near a white-light vortex,” New J. Phys. 5, 154.1–154.7 (2003).
[CrossRef]

Liesener, J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
[CrossRef]

Lubin, D. L.

M. T. Gruneisen, R. C. Dymale, J. R. Rotgé, L. F. DeSandre, and D. L. Lubin, “Wavelength-dependant characteristics of a telescope system with diffractive wavefront compensation,” Opt. Eng. 44, 068002 (2005)
[CrossRef]

Mahajan, V. N.

V. N. Mahajan, “Zernike Circle Polynomials and Optical Aberrations of Systems with circular pupils,” Eng. & Lab. Notes, in Opt. & Phot. News 5, S–12–S–24 (1994).

Marsh, P. N.

Neil, M. A. A.

M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” PNAS 99, 5788–5792 (2002).
[CrossRef] [PubMed]

M. A. A. Neil, M. J. Booth, and T. Wilson, “New model wave-front sensor: a theoretical analysis,” J. Opt. Soc. Am. A 16, 1098–1107 (2000).
[CrossRef]

Norris, T. B.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002).
[CrossRef] [PubMed]

Padgett, M. J.

J. Leach and M. J. Padgett, “Observation of chromatic effects near a white-light vortex,” New J. Phys. 5, 154.1–154.7 (2003).
[CrossRef]

Patterson, B. A.

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the Optimisation Algorithms used in the implementation of Adaptive Optics in Confocal and Multiphoton Microscopy,” Microsc. Res. and Tech. 67, 36–44 (2005).
[CrossRef]

Poland, S. P.

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the Optimisation Algorithms used in the implementation of Adaptive Optics in Confocal and Multiphoton Microscopy,” Microsc. Res. and Tech. 67, 36–44 (2005).
[CrossRef]

Reicherter, M.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
[CrossRef]

Reiner, G.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
[CrossRef]

Rotgé, J. R.

M. T. Gruneisen, R. C. Dymale, J. R. Rotgé, L. F. DeSandre, and D. L. Lubin, “Wavelength-dependant characteristics of a telescope system with diffractive wavefront compensation,” Opt. Eng. 44, 068002 (2005)
[CrossRef]

Sarro, P. M.

G. Vdovin and P. M. Sarro, “Flexible mirror micromachined in silicon,” App. Opt. 34, 2968–2972 (1995).
[CrossRef]

Schwertner, M.

Sherman, L.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002).
[CrossRef] [PubMed]

Stelzer, E. H. K.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
[CrossRef]

Tiziani, H. J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
[CrossRef]

Tyson, R. K

R. K Tyson, Principles of adaptive optics. (Academic Press1998), Chaps 3, 4.

Valentine, G. J.

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the Optimisation Algorithms used in the implementation of Adaptive Optics in Confocal and Multiphoton Microscopy,” Microsc. Res. and Tech. 67, 36–44 (2005).
[CrossRef]

Vdovin, G.

G. Vdovin and P. M. Sarro, “Flexible mirror micromachined in silicon,” App. Opt. 34, 2968–2972 (1995).
[CrossRef]

Wilson, T.

M. Schwertner, M. J. Booth, and T. Wilson, “Characterizing specimen induced aberrations for high NA adaptive optical microscopy,” Opt. Express 12, 6540–6550 (2004).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” PNAS 99, 5788–5792 (2002).
[CrossRef] [PubMed]

M. A. A. Neil, M. J. Booth, and T. Wilson, “New model wave-front sensor: a theoretical analysis,” J. Opt. Soc. Am. A 16, 1098–1107 (2000).
[CrossRef]

R. Juškaitis and T. Wilson, “Imaging in reciprocal fibre-optic based confocal scanning microscopes,” Opt. Comm. 92, 315–325 (1992).
[CrossRef]

Wright, A. J.

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the Optimisation Algorithms used in the implementation of Adaptive Optics in Confocal and Multiphoton Microscopy,” Microsc. Res. and Tech. 67, 36–44 (2005).
[CrossRef]

Ye, J. Y.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002).
[CrossRef] [PubMed]

App. Opt. (1)

G. Vdovin and P. M. Sarro, “Flexible mirror micromachined in silicon,” App. Opt. 34, 2968–2972 (1995).
[CrossRef]

Eng. & Lab. Notes, in Opt. & Phot. News (1)

V. N. Mahajan, “Zernike Circle Polynomials and Optical Aberrations of Systems with circular pupils,” Eng. & Lab. Notes, in Opt. & Phot. News 5, S–12–S–24 (1994).

J. Microsc. (2)

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002).
[CrossRef] [PubMed]

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
[CrossRef]

J. Opt. Soc. Am. A (1)

M. A. A. Neil, M. J. Booth, and T. Wilson, “New model wave-front sensor: a theoretical analysis,” J. Opt. Soc. Am. A 16, 1098–1107 (2000).
[CrossRef]

J. Phys. D: App. Phys. (1)

J. M. Girkin, “Topical Review: Optical physics enables advances in multiphoton imaging,” J. Phys. D: App. Phys. 36, R250–R258 (2003).
[CrossRef]

Microsc. Res. and Tech. (1)

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the Optimisation Algorithms used in the implementation of Adaptive Optics in Confocal and Multiphoton Microscopy,” Microsc. Res. and Tech. 67, 36–44 (2005).
[CrossRef]

New J. Phys. (1)

J. Leach and M. J. Padgett, “Observation of chromatic effects near a white-light vortex,” New J. Phys. 5, 154.1–154.7 (2003).
[CrossRef]

Opt. Comm. (1)

R. Juškaitis and T. Wilson, “Imaging in reciprocal fibre-optic based confocal scanning microscopes,” Opt. Comm. 92, 315–325 (1992).
[CrossRef]

Opt. Commun. (1)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
[CrossRef]

Opt. Eng. (1)

M. T. Gruneisen, R. C. Dymale, J. R. Rotgé, L. F. DeSandre, and D. L. Lubin, “Wavelength-dependant characteristics of a telescope system with diffractive wavefront compensation,” Opt. Eng. 44, 068002 (2005)
[CrossRef]

Opt. Express (3)

PNAS (1)

M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” PNAS 99, 5788–5792 (2002).
[CrossRef] [PubMed]

Other (3)

http://www.holoeye.com/slm_technology.html

http://sales.hamamatsu.com/en/products/electron-tube-division/detectors/spatial-light-modulator.php

R. K Tyson, Principles of adaptive optics. (Academic Press1998), Chaps 3, 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

A schematic of the experimental setup. L1 – L6 make up three 4f lens systems and Ph1 is a pinhole that selects the first diffraction order from the SLM.

Fig. 2.
Fig. 2.

A schematic of the closed-loop control system. The majority of the optical components have been omitted for clarity but can be seen in Fig. 1.

Fig. 3.
Fig. 3.

The axial PSF, recorded by translating the microscope objective, for different quantities of defocus applied using a) the DMM and b) the SLM.

Fig. 4.
Fig. 4.

A graph of PSF with the corresponding first and second derivatives from the lock-in amplifiers.

Fig. 5.
Fig. 5.

The response of the lock-in amplifier when the feedback loop to the SLM is closed.

Metrics