Abstract

We show that diffraction-suppressed propagation of light can be achieved in one-dimensional multilayer metal-dielectric structure, leading to high-resolution imaging through metallodielectric nanofilms.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Durnin, J. J. Miceli, and J. H. Eberly, "Diffraction-Free Beams," Phys. Rev. Lett. 58, 1499 (1987).
    [CrossRef] [PubMed]
  2. J. Durnin, "Exact solutions for nondiffracting beams. I. The scalar theory," J. Opt. Soc. Am. A 4, 651 (1987).
    [CrossRef]
  3. H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, "Diffraction Management," Phys. Rev. Lett. 85, 1863 (2000).
    [CrossRef] [PubMed]
  4. S. Longhi and D. Janner, "Diffraction and localization in low-dimensional photonic bandgaps," Opt. Lett. 29, 2653 (2004).
    [CrossRef] [PubMed]
  5. O. Manela, M. Segev, and D. N. Christodoulides, "Nondiffracting beams in periodic media," Opt. Lett. 30, 2611 (2005).
    [CrossRef] [PubMed]
  6. A. Locatelli, M. Conforti, D. Modotto, and C. De Angelis, "Diffraction engineering in arrays of photonic crystal waveguides," Opt. Lett. 30, 2894 (2005).
    [CrossRef] [PubMed]
  7. H.-T. Chien, H.-T. Tang, C.-H. Kuo, C.-C. Chen, and Z. Ye, "Directed diffraction without negative refraction," Phys. Rev. B 70 113101 (2004).
    [CrossRef]
  8. P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Imaging by flat lens using negative refraction," Nature (London) 426, 404 (2003).
    [CrossRef]
  9. C. Luo, S. G. Johnson, and J. D. Joannopoulos, "Subwavelength imaging in photonic crystals," Phys. Rev. B 68, 045115 (2003).
    [CrossRef]
  10. N. Fang, H. Lee, C. Sun, and X. Zhang, "SubDiffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534 (2005).
    [CrossRef] [PubMed]
  11. N. Fang and X.Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161 (2003).
    [CrossRef]
  12. D. O. S. Melville, R. J. Blaikie, and C. R.Wolf, "Submicron imaging with a planar silver lens," Appl. Phys. Lett. 84 4403 (2004).
    [CrossRef]
  13. D. O. S. Melville and R. J. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13 2127 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-6-2127.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-6-2127</a>
    [CrossRef] [PubMed]
  14. J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966 (2000).
    [CrossRef] [PubMed]
  15. S. Feng, J. M. Elson, and P. L. Overfelt, "Optical properties of multilayer metaldielectric nanofilms with all-evanescent modes," Opt. Express 13, 4113 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-4113.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-4113</a>
    [CrossRef] [PubMed]
  16. S. Sena Akarca-Biyikli, Irfan Bulu, and Ekmel Ozbay, "Enhanced transmission of microwave radiation in onedimensional metallic gratings with subwavelength aperture," Appl. Phys. Lett. 85, 1098 (2004).
    [CrossRef]
  17. W. C. Tan, T. W. Preist, and R. J. Sambles, "Resonant tunneling of light through thin metal films via strongly localized surface plasmons," Phys. Rev. B 62, 11134 (2000).
    [CrossRef]
  18. M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, "Transparent, metallodielectric, one-dimensional, photonic band-gap structures." J. Appl. Phys. 83, 2377 (1998).
    [CrossRef]
  19. S. Feng, J. M. Elson, and P. L. Overfelt, "Transparent photonic band in metallodielectric nanostructures," Phys.Rev. B 72, 085117 (2005).
    [CrossRef]

Appl. Phys. Lett. (3)

N. Fang and X.Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161 (2003).
[CrossRef]

D. O. S. Melville, R. J. Blaikie, and C. R.Wolf, "Submicron imaging with a planar silver lens," Appl. Phys. Lett. 84 4403 (2004).
[CrossRef]

S. Sena Akarca-Biyikli, Irfan Bulu, and Ekmel Ozbay, "Enhanced transmission of microwave radiation in onedimensional metallic gratings with subwavelength aperture," Appl. Phys. Lett. 85, 1098 (2004).
[CrossRef]

J. Appl. Phys. (1)

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, "Transparent, metallodielectric, one-dimensional, photonic band-gap structures." J. Appl. Phys. 83, 2377 (1998).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nature (London) (1)

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Imaging by flat lens using negative refraction," Nature (London) 426, 404 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (3)

W. C. Tan, T. W. Preist, and R. J. Sambles, "Resonant tunneling of light through thin metal films via strongly localized surface plasmons," Phys. Rev. B 62, 11134 (2000).
[CrossRef]

C. Luo, S. G. Johnson, and J. D. Joannopoulos, "Subwavelength imaging in photonic crystals," Phys. Rev. B 68, 045115 (2003).
[CrossRef]

H.-T. Chien, H.-T. Tang, C.-H. Kuo, C.-C. Chen, and Z. Ye, "Directed diffraction without negative refraction," Phys. Rev. B 70 113101 (2004).
[CrossRef]

Phys. Rev. Lett. (3)

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, "Diffraction Management," Phys. Rev. Lett. 85, 1863 (2000).
[CrossRef] [PubMed]

J. Durnin, J. J. Miceli, and J. H. Eberly, "Diffraction-Free Beams," Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

Phys.Rev. B (1)

S. Feng, J. M. Elson, and P. L. Overfelt, "Transparent photonic band in metallodielectric nanostructures," Phys.Rev. B 72, 085117 (2005).
[CrossRef]

Science (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, "SubDiffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Diffraction curves of the MD medium (solid blue) and free space (dashed green). The KB is the Bloch wave number and refers to the MD medium. The kz is the wave number in the z direction and refers to the free space. The kx is the wave number in the x direction. The values of ϵ 1 = 2.66, ωp = 5.8 fs-1, γ = 0.06 fs-1, d 1 = 100 nm, and d 2 = 60 nm, where d = d 1 +d 2. The wavelength λ = 632 nm and this yields ϵ 2 = -2.7802 +i0.076. This wavelength is used for all the plots.

Fig. 2.
Fig. 2.

Schematic of light propagation through the MD medium. The thickness of the MD stack is L. The distances of the object and image planes to the MD stack are L 1 and L 2, respectively. The total propagation distance Z =L 1 +L+L 2.

Fig. 3.
Fig. 3.

Intensity distribution of two slits after propagating a distance Z through the MD stack (solid blue) and through free space (dashed green). L 1 = L 2 = 300 nm. L = 3200 nm. The MD stack has 20 periods of the metal-dielectric layers. The period d = 160 nm. The other parameters are the same as those in Fig. 1.

Fig. 4.
Fig. 4.

Two-dimensional object of letter ‘H’ placed at the plane z = 0.

Fig. 5.
Fig. 5.

Image of letter ‘H’ after propagating a distance Z through the MD stack (left) and through air (right). The MD stack has 5 periods of the metal-dielectric layers. The thickness of the stack L = 800 nm. L 1 = L 2 = 100 nm. The other paramters are the same as those in Fig. 1.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϕ k x z = k z z = z ( ω c ) 2 k x 2 .
cos ( K B d ) = cosh ( α 1 d 1 ) cosh ( α 2 d 2 ) + α 1 2 ε 2 2 + α 2 2 ε 1 2 2 α 1 α 2 ε 1 ε 2 sinh ( α 1 d 1 ) sinh ( α 2 d 2 ) ,
U x y Z = 1 { H ( f x , f y ) { U ( x , y , 0 ) } } ,

Metrics