Abstract

An rms measurement repeatability of ≤0.07 nm and a reproducibility of ≤0.16 are reported from a series of thickness measurements made on a 280 μm thick, 37.5 mm diameter lithium niobate wafer. The measurements were taken on a custom made metrology rig based on accurate rotation of a Fabry-Perot etalon structure in a collimated beam from a wavelength stabilized Helium Neon laser. The measurements were made on different days with the wafer in three different orientations.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. D. Prasad, S. K. Mathew, A. Bhatnagar, A Ambastha, "Solar photospheric and chromospheric observations using a lithium niobate Fabry-Perot etalon," Exp. Astron. 125-133, (1998).
    [CrossRef]
  2. D. M. Rust, "Etalon filters", Opt. Eng. 33, pp. 3342-3348, 1994.
    [CrossRef]
  3. J. Arkwright, I. Underhill, N. Pereira, and M. Gross, "Deterministic control of thin film thickness in physical vapor deposition systems using a multi-aperture mask," Opt. Express 13, 2731-2741 (2005).
    [CrossRef] [PubMed]
  4. J. Burke, B. F. Oreb, R. P. Netterfield, K. Hibino, "Metrology challenges of thin optical wafers for high finesse etalons," TD2-53, OptiFab 2003, SPIE Technical Digest #02, ISBN 0-8194-5104-5.
  5. E. Hecht, Optics, Addison-Wesley, ISBN 0-201-11611-1, 1987.
  6. TFCalc, <a href= "http://www.sspectra.com">http://www.sspectra.com</a>.
  7. Australian Government National Measurements Institute, <a href= "http://www.measurement.gov.au">http://www.measurement.gov.au</a>.
  8. "Guide to the expression of uncertainty in measurement," International Organization for Standardization, p. 33, ISBN 92-67-10188-9, 1995.

Exp. Astron. 1988 (1)

C. D. Prasad, S. K. Mathew, A. Bhatnagar, A Ambastha, "Solar photospheric and chromospheric observations using a lithium niobate Fabry-Perot etalon," Exp. Astron. 125-133, (1998).
[CrossRef]

International Organization for Standardi (1)

"Guide to the expression of uncertainty in measurement," International Organization for Standardization, p. 33, ISBN 92-67-10188-9, 1995.

Opt. Eng. (1)

D. M. Rust, "Etalon filters", Opt. Eng. 33, pp. 3342-3348, 1994.
[CrossRef]

Opt. Express (1)

OptiFab 2003, SPIE Technical Digest #02 (1)

J. Burke, B. F. Oreb, R. P. Netterfield, K. Hibino, "Metrology challenges of thin optical wafers for high finesse etalons," TD2-53, OptiFab 2003, SPIE Technical Digest #02, ISBN 0-8194-5104-5.

Other (3)

E. Hecht, Optics, Addison-Wesley, ISBN 0-201-11611-1, 1987.

TFCalc, <a href= "http://www.sspectra.com">http://www.sspectra.com</a>.

Australian Government National Measurements Institute, <a href= "http://www.measurement.gov.au">http://www.measurement.gov.au</a>.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Normalised etalon transmission as a function of external angle of incidence for mirror reflectivities of 75%, 85%, and 95%.

Fig. 2.
Fig. 2.

Wafer scanning rig.

Fig. 3.
Fig. 3.

Averaged measurement of the lithium niobate wafer in the ‘0° positive Z’ orientation.

Fig. 4.
Fig. 4.

Averaged measurement of the lithium niobate wafer shown in Fig. 3 in the ‘90°’ orientation.

Fig. 5.
Fig. 5.

Averaged measurement of the lithium niobate wafer shown in Fig. 3 in the ‘0° negative Z’ orientation.

Fig. 6.
Fig. 6.

Difference function between Figs. 3 and 5 after the image of Fig. 5 had been flipped along the Y-axis.

Tables (1)

Tables Icon

Table 1. rms and absolute difference values between the maps shown in Figs. 3, Figs. 4, and Figs. 5.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T ( d , R , λ , θ ) = 1 1 + ( 4 R ( 1 R ) 2 ) * Sin 2 ( 2 πndCos ( θ i ) ) λ ,

Metrics