Abstract

We demonstrate locking of an on-chip, high-Q toroidal-cavity to a pump laser using two, distinct methods: coupled power stabilization and wavelength locking of pump laser to the microcavity. In addition to improvements in operation of previously demonstrated micro-Raman and micro-OPO lasers, these techniques have enabled observation of a continuous, cascaded nonlinear process in which photons generated by optical parametric oscillations (OPO) function as a pump for Raman lasing. Dynamical behavior of the feedback control systems is also shown including the interplay between the control loop and the thermal nonlinearity. The demonstrated stabilization loop is essential for studying generation of nonclassical states using a microcavity optical parametric oscillator.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, "Quality-Factor and Nonlinear Properties of Optical Whispering-Gallery Modes," Phys. Lett. A 137 (7-8), 393-397 (1989).
    [CrossRef]
  2. V. S. Ilchenko, M. L. Gorodetsky, X. S. Yao et al., "Microtorus: a high-finesse microcavity with whispering-gallery modes," Opt. Lett. 26 (5), 256-258 (2001).
    [CrossRef]
  3. D. K. Armani, T. J. Kippenberg, S. M. Spillane et al., "Ultra-high-Q toroid microcavity on a chip," Nature 421 (6926), 925-928 (2003).
    [CrossRef] [PubMed]
  4. A. J. Campillo, J. D. Eversole, and H. B. Lin, "Cavity Quantum Electrodynamic Enhancement of Stimulated-Emission in Microdroplets," Phys. Rev. Lett. 67 (4), 437-440 (1991).
    [CrossRef] [PubMed]
  5. F. Treussart, J. Hare, L. Collot et al., "Quantized Atom-Field Force at the Surface of a Microsphere," Opt. Lett. 19 (20), 1651-1653 (1994).
    [CrossRef] [PubMed]
  6. D. W. Vernooy, A. Furusawa, N. P. Georgiades et al., "Cavity QED with high-Q whispering gallery modes," Phys. Rev. A 57 (4), R2293-R2296 (1998).
    [CrossRef]
  7. F. Vollmer, D. Braun, A. Libchaber et al., "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80 (21), 4057-4059 (2002).
    [CrossRef]
  8. S. L. Mccall, A. F. J. Levi, R. E. Slusher et al., "Whispering-Gallery Mode Microdisk Lasers," Appl. Phys. Lett. 60 (3), 289-291 (1992).
    [CrossRef]
  9. V. Sandoghdar, F. Treussart, J. Hare et al., "Very low threshold whispering-gallery-mode microsphere laser," Phys. Rev. A 54 (3), R1777-R1780 (1996).
    [CrossRef] [PubMed]
  10. L. Yang, D. K. Armani, and K. J. Vahala, "Fiber-coupled erbium microlasers on a chip," Appl. Phys. Lett. 83 (5), 825-826 (2003).
    [CrossRef]
  11. T. J. Kippenberg, S. M. Spillane, D. K. Armani et al., "Ultralow-threshold microcavity Raman laser on a microelectronic chip," Opt. Lett. 29 (11), 1224-1226 (2004).
    [CrossRef] [PubMed]
  12. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, "Ultralow-threshold Raman laser using a spherical dielectric microcavity," Nature 415 (6872), 621-623 (2002).
    [CrossRef] [PubMed]
  13. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity," Phys Rev Lett 93 (8), - (2004).
    [CrossRef]
  14. T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg and K. J. Vahala, " Temporal behavior of radiationpressure-induced vibrations of an optical micro-cavity phonon mode." Accepted for publication in Phys Rev Lett.
  15. K. J. Vahala, "Optical microcavities," Nature 424 (6950), 839-846 (2003).
    [CrossRef] [PubMed]
  16. M. L. Gorodetsky and I. S. Grudinin, "Fundamental thermal fluctuations in microspheres," J. Opt. Soc. Am. B 21 (4), 697-705 (2004).
    [CrossRef]
  17. J. C. Knight, G. Cheung, F. Jacques et al., "Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper," Opt. Lett. 22 (15), 1129-1131 (1997).
    [CrossRef] [PubMed]
  18. R. V. Pound, "Electronic Frequency Stabilization of Microwave Oscillators," Rev. Sci. Instrum 17 (11), 490-505 (1946).
    [CrossRef] [PubMed]
  19. R. W. P. Drever, J. L. Hall, F. V. Kowalski et al., "Laser Phase and Frequency Stabilization Using an Optical-Resonator," Appl. Phys. B-Photo. 31 (2), 97-105 (1983).
    [CrossRef]
  20. G. C. Bjorklund, M. D. Levenson, W. Lenth et al., "Frequency-Modulation (Fm) Spectroscopy - Theory of Lineshapes and Signal-to-Noise Analysis," Appl. Phys. B-Photo. 32 (3), 145-152 (1983).
    [CrossRef] [PubMed]
  21. A. Abramovici, W. E. Althouse, R. W. P. Drever et al., "Ligo - the Laser-Interferometer-Gravitational-Wave-Observatory," Science 256 (5055), 325-333 (1992).
    [CrossRef]
  22. P. Grangier, R. E. Slusher, B. Yurke et al., "Squeezed-Light Enhanced Polarization Interferometer," Phys. Rev. Lett. 59 (19), 2153-2156 (1987).
    [CrossRef] [PubMed]
  23. M. A. Persaud, J. M. Tolchard, and A. I. Ferguson, "Efficient Generation of Picosecond Pulses at 243nm," Ieee J. Quantum Elect. 26 (7), 1253-1258 (1990).
    [CrossRef]
  24. K. An, J. J. Childs, R. R. Dasari et al., "Microlaser - a Laser with One-Atom in an Optical-Resonator," Phys. Rev. Lett. 73 (25), 3375-3378 (1994).
    [CrossRef] [PubMed]
  25. A. Mugino, T. Tamamoto, T. Omatsu et al., "High sensitive detection of trace gases using optical heterodyne method with a high finesse intra-cavity resonator," Opt. Rev. 3 (4), 243-250 (1996).
    [CrossRef]
  26. T. Carmon, L. Yang, and K. J. Vahala, "Dynamical thermal behavior and thermal self-stability of microcavities," Opt. Express 12 (20), 4742-4750 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4742.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4742.<a/>
    [CrossRef] [PubMed]
  27. V. S. Ilchenko and M. L. Gorodetsky, "Thermal nonlinear effects in optical whispering gallery microresonators," Laser. Phys. 2, 1004-1009 (1992).
  28. R. H. Stolen, J. P. Gordon, W. J. Tomlinson et al., "Raman Response Function of Silica-Core Fibers," J. Opt. Soc. Am. B 6 (6), 1159-1166 (1989).
    [CrossRef]

Appl. Phys. B-Photo. (2)

R. W. P. Drever, J. L. Hall, F. V. Kowalski et al., "Laser Phase and Frequency Stabilization Using an Optical-Resonator," Appl. Phys. B-Photo. 31 (2), 97-105 (1983).
[CrossRef]

G. C. Bjorklund, M. D. Levenson, W. Lenth et al., "Frequency-Modulation (Fm) Spectroscopy - Theory of Lineshapes and Signal-to-Noise Analysis," Appl. Phys. B-Photo. 32 (3), 145-152 (1983).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

L. Yang, D. K. Armani, and K. J. Vahala, "Fiber-coupled erbium microlasers on a chip," Appl. Phys. Lett. 83 (5), 825-826 (2003).
[CrossRef]

F. Vollmer, D. Braun, A. Libchaber et al., "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80 (21), 4057-4059 (2002).
[CrossRef]

S. L. Mccall, A. F. J. Levi, R. E. Slusher et al., "Whispering-Gallery Mode Microdisk Lasers," Appl. Phys. Lett. 60 (3), 289-291 (1992).
[CrossRef]

Ieee J. Quantum Elect. (1)

M. A. Persaud, J. M. Tolchard, and A. I. Ferguson, "Efficient Generation of Picosecond Pulses at 243nm," Ieee J. Quantum Elect. 26 (7), 1253-1258 (1990).
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser. Phys. (1)

V. S. Ilchenko and M. L. Gorodetsky, "Thermal nonlinear effects in optical whispering gallery microresonators," Laser. Phys. 2, 1004-1009 (1992).

Nature (3)

K. J. Vahala, "Optical microcavities," Nature 424 (6950), 839-846 (2003).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, "Ultralow-threshold Raman laser using a spherical dielectric microcavity," Nature 415 (6872), 621-623 (2002).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane et al., "Ultra-high-Q toroid microcavity on a chip," Nature 421 (6926), 925-928 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (4)

Opt. Rev. (1)

A. Mugino, T. Tamamoto, T. Omatsu et al., "High sensitive detection of trace gases using optical heterodyne method with a high finesse intra-cavity resonator," Opt. Rev. 3 (4), 243-250 (1996).
[CrossRef]

Phys Rev Lett (2)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity," Phys Rev Lett 93 (8), - (2004).
[CrossRef]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg and K. J. Vahala, " Temporal behavior of radiationpressure-induced vibrations of an optical micro-cavity phonon mode." Accepted for publication in Phys Rev Lett.

Phys. Lett. A (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, "Quality-Factor and Nonlinear Properties of Optical Whispering-Gallery Modes," Phys. Lett. A 137 (7-8), 393-397 (1989).
[CrossRef]

Phys. Rev. A (2)

D. W. Vernooy, A. Furusawa, N. P. Georgiades et al., "Cavity QED with high-Q whispering gallery modes," Phys. Rev. A 57 (4), R2293-R2296 (1998).
[CrossRef]

V. Sandoghdar, F. Treussart, J. Hare et al., "Very low threshold whispering-gallery-mode microsphere laser," Phys. Rev. A 54 (3), R1777-R1780 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

A. J. Campillo, J. D. Eversole, and H. B. Lin, "Cavity Quantum Electrodynamic Enhancement of Stimulated-Emission in Microdroplets," Phys. Rev. Lett. 67 (4), 437-440 (1991).
[CrossRef] [PubMed]

P. Grangier, R. E. Slusher, B. Yurke et al., "Squeezed-Light Enhanced Polarization Interferometer," Phys. Rev. Lett. 59 (19), 2153-2156 (1987).
[CrossRef] [PubMed]

K. An, J. J. Childs, R. R. Dasari et al., "Microlaser - a Laser with One-Atom in an Optical-Resonator," Phys. Rev. Lett. 73 (25), 3375-3378 (1994).
[CrossRef] [PubMed]

Rev. Sci. Instrum (1)

R. V. Pound, "Electronic Frequency Stabilization of Microwave Oscillators," Rev. Sci. Instrum 17 (11), 490-505 (1946).
[CrossRef] [PubMed]

Science (1)

A. Abramovici, W. E. Althouse, R. W. P. Drever et al., "Ligo - the Laser-Interferometer-Gravitational-Wave-Observatory," Science 256 (5055), 325-333 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Pound-Drever error measurement system. (b) Parameters measured and calculated during scan of pump wavelength: Upper panel: pump wavelength (green trace), calculated cavity resonance wavelength (blue trace) and mode-volume temperature shift (blue trace, right ordinates). Middle panel: measured and calculated transmission (blue, and black respectively). Bottom panel: measured Pound-Drever error signal (red). The experimental parameters are: Q=2 10^7, λ 0=1545nm, pump power of P=1.8mW and local oscillator RF frequency of 300 MHz. Tunable diode laser (New Focus, Velocity) was used as a pump. Pump linewidth is 300kHz which is ~300 times narrower than cavity linewidth.

Fig. 2.
Fig. 2.

Wavelength locking system incorporating Pound-Drever assembly. (a) Experimental setup. (b) System recovers from perturbation in the regime of thermal instability. The measured- transmission (upper panel), error (middle panel) and applied correction (lower panel) versus time are presented. Parameters are as in Fig. 1. Controller Integration time is 50 ms. Repeating the same experiment with faster (slower) integration time reveals faster (slower) relock events.

Fig. 3.
Fig. 3.

(a) Cavity transmission versus time showing Pound-Drever locked cavity (black) in comparison with unlocked cavity (red and blue). Transmission of the unlocked system fluctuates (red) when pump wavelength and cavity resonance drift relative to each other. Coupling to resonance is lost (blue) when pump wavelength exceeds the thermally drifted cavity resonance. (b) Spectral analysis of locked and unlocked transmission data. The wavelength locking system incorporating Pound-Drever assembly is shown in Fig. 2(a). Integration time of the PID controller is 20ms ; cavity optical quality is Q=107, pump power is 200µW.

Fig. 4.
Fig. 4.

Power locked cavity: (a) Experimental system, (b) parametric oscillation and Raman laser spectra as a function of the coupled power. (c) L-L curve for the total output power of the combined effect (Raman peaks + parametric oscillation’s signal + idler). Line here is a fit to model. Inset: Similar L-L curves but for Raman, parametric oscillation signal, and parametric oscillation idler separately. Lines here are a guide to the eye..

Metrics