Abstract

One of the most interesting applications of photopolymers is as holographic recording materials for holographic memories. One of the basic requirements for this application is that the recording material thickness must be 500 µm or thicker. In recent years many 2-dimensional models have been proposed for the analysis of photopolymers. Good agreement between theoretical simulations and experimental results has been obtained for layers thinner than 200 µm. The attenuation of the light inside the material by Beer’s law results in an attenuation of the index profile inside the material and in some cases the effective optical thickness of the material is lower than the physical thickness. This is an important and fundamental limitation in achieving high capacity holographic memories using photopolymers and cannot be analyzed using 2-D diffusion models. In this paper a model is proposed to describe the behavior of the photopolymers in 3-D. This model is applied to simulate the formation of profiles in depth for different photopolymer viscosities and different intensity attenuations inside the material.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F.J. McClung, “Hologram recorded on photopolymer holographic recording material,” Appl. Phys. Lett. 14, 159–160 (1969).
    [Crossref]
  2. J. M. Moran and I. P. Kaminow, “Properties of holographic gratings photoinduced in polymethyl methacrylate,” Appl. Opt. 12, 1964–1970 (1973).
    [Crossref] [PubMed]
  3. T. Ingwall and M. Troll, “The mechanism of hologram formation in DMP-128 photopolymer, in Holographic Optics: Design and Applications,” Proc. SPIE 883, 94 (1988).
  4. D. A. Walkman, H-Y. S. Li, and M. G. Horner, “Volume Shrinkage in Slant Fringe Gratings of a Cationic Ring-Opening Holographic Recording Material,” J. Im. Science and Technology 41, 497–514 (1997).
  5. J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik,  112, 449–463 (2001).
    [Crossref]
  6. S. Blaya, L. Carretero, and A. Fimia. “Highly sensitive photopolymerisable dry film for use in real time holography,” Appl. Phys. Lett.,  75, 1628–1630 (1998).
    [Crossref]
  7. Márquez, C. Neipp, S. Gallego, M. Ortuño, I. Pascual, and A. Beléndez, “Holographically edge enhanced image formation system,” Opt. Lett. 28, 1510–1512 (2003).
    [Crossref] [PubMed]
  8. G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymers materials,” J. Mod. Opt. 41, 1929–1939 (1994).
    [Crossref]
  9. J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording: VI. Some Basic ideas for modelling the Kinetics of the recording process”, Pure and Appl. Opt. 6, 225–245 (1997).
    [Crossref]
  10. S. Piazzolla y and B. K. Jenkins, “First-harmonic diffusion model for holographic grating formation in photopolymers”, J. Opt. Soc. Am. B 17, 1147–1157 (2000).
    [Crossref]
  11. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer”, J. Opt. Soc. Am. A 17, 1008–1014 (2000).
    [Crossref]
  12. V. Moreau, Y. Renotte, and Y. Lion, “Characterization of DuPont photopolymer: determination of kinetic parameters in a diffusion model”, Applied Optics 41, 3427–3435 (2002).
    [Crossref] [PubMed]
  13. Neipp, S. Gallego, M. Ortuño, A. Márquez, M. Álvarez, A. Beléndez, and I. Pascual “First harmonic diffusion based model applied to a PVA/Acrylamida based photopolymer,” J. Opt. Soc. Am. B,  20, 2052–2060 (2003).
    [Crossref]
  14. R. R. Adhami, D. J. Lanteigne, and D. A. Gregory, “Photopolymer hologram formation theory”, Microwave Optics Technology Letters 4, 106–109 (1991).
    [Crossref]
  15. V. L Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers”, Journal of Applied Physics 81, 5913–5923 (1997).
    [Crossref]
  16. G. M. Karpov, V. V. Obukhovsky, T. N. Smirnova, and V. V. Lemeshko, “Spatial transfer of matter as method of holographic recording in photoformers”, Optics Communications 174, 391–404 (2000).
    [Crossref]
  17. S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers”, Applied Physics B 77, 639–662 (2003).
    [Crossref]
  18. C. Neipp, J. T. Sheridan, S. Gallego, M. Ortuño, A. Márquez, I. Pascual, and A. Beléndez, “Effect of a depth attenuated refractive index profile in the angular responses of the efficiency of higher orders in volume gratings recorded in a PVA/Acrylamide photopolymer” Opt. Comm. 233, 311–322 (2004).
    [Crossref]
  19. S. Gallego, C. Neipp, M. Ortuño, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers” Opt. Express 13, 1939–1947 (2005).
    [Crossref] [PubMed]
  20. S. Gallego, C. Neipp, M. Ortuño, A. Márquez, I. Pascual, and A. Beléndez “Optical and physical thickness of holographic diffraction gratings recorded in photopolymers,” Opto Ireland, SPIE Europe.
  21. S. Gallego, C. Neipp, M. Ortuño, A. Beléndez, and I. Pascual “Stabilization of volume gratings recorded in PVA/acrylamide photopolymers with diffraction efficiencies higher than 90%,” J. Mod. Opt. 51, 491–503 (2004).
    [Crossref]
  22. S. Gallego, C. Neipp, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual “Diffusion based model to predict the conservation of holographic gratings recorded in PVA/Acrylamide photopolymer,” Appl. Opt. 42, 5839–5845 (2003).
    [Crossref] [PubMed]
  23. S. Gallego, M. Ortuño, C. Neipp, C. García, A. Beléndez, and I. Pascual, “Temporal evolution of the angular response of a holographic diffraction grating in PVA/acrylamide photopolymer,” Opt. Express 11, 181–190 (2003).
    [Crossref] [PubMed]
  24. M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
    [Crossref]
  25. M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt. 42 (35) 7008–7012 (2003).
    [Crossref] [PubMed]
  26. C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835–1843 (2003).
    [Crossref] [PubMed]
  27. I. Aubrecht, M. Miler y, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
    [Crossref]
  28. J. Lougnot, P. Jost y, and L. Lavielle, “Polymers for holographic recording: VI. Some Basic ideas for modelling the Kinetics of the recording process,” Pure and Appl. Opt. 6, 225–245 (1997).
    [Crossref]
  29. S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, and I. Pascual, “Characterization of PVA/AA holographic memories using first harmonic diffusion model,” Appl. Opt. Accepted by minor revision.
  30. A. Pu, K. Curtis, and P. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824–2829 (1996).
    [Crossref]
  31. H. J. Coufal and D. Psaltis, Holographic Data Storage, G. T. Sincerbox, Springer-Verlag, New York, 2000.
  32. N. Uchida, “Calculation of diffraction efficiency in hologram gratings attenuated along the direction perpendicular to the grating vector,” J. Opt. Soc. Am. A 63, 280–285 (1973).
    [Crossref]

2005 (1)

2004 (2)

S. Gallego, C. Neipp, M. Ortuño, A. Beléndez, and I. Pascual “Stabilization of volume gratings recorded in PVA/acrylamide photopolymers with diffraction efficiencies higher than 90%,” J. Mod. Opt. 51, 491–503 (2004).
[Crossref]

C. Neipp, J. T. Sheridan, S. Gallego, M. Ortuño, A. Márquez, I. Pascual, and A. Beléndez, “Effect of a depth attenuated refractive index profile in the angular responses of the efficiency of higher orders in volume gratings recorded in a PVA/Acrylamide photopolymer” Opt. Comm. 233, 311–322 (2004).
[Crossref]

2003 (8)

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers”, Applied Physics B 77, 639–662 (2003).
[Crossref]

S. Gallego, C. Neipp, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual “Diffusion based model to predict the conservation of holographic gratings recorded in PVA/Acrylamide photopolymer,” Appl. Opt. 42, 5839–5845 (2003).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, C. García, A. Beléndez, and I. Pascual, “Temporal evolution of the angular response of a holographic diffraction grating in PVA/acrylamide photopolymer,” Opt. Express 11, 181–190 (2003).
[Crossref] [PubMed]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[Crossref]

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt. 42 (35) 7008–7012 (2003).
[Crossref] [PubMed]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835–1843 (2003).
[Crossref] [PubMed]

Márquez, C. Neipp, S. Gallego, M. Ortuño, I. Pascual, and A. Beléndez, “Holographically edge enhanced image formation system,” Opt. Lett. 28, 1510–1512 (2003).
[Crossref] [PubMed]

Neipp, S. Gallego, M. Ortuño, A. Márquez, M. Álvarez, A. Beléndez, and I. Pascual “First harmonic diffusion based model applied to a PVA/Acrylamida based photopolymer,” J. Opt. Soc. Am. B,  20, 2052–2060 (2003).
[Crossref]

2002 (1)

V. Moreau, Y. Renotte, and Y. Lion, “Characterization of DuPont photopolymer: determination of kinetic parameters in a diffusion model”, Applied Optics 41, 3427–3435 (2002).
[Crossref] [PubMed]

2001 (1)

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik,  112, 449–463 (2001).
[Crossref]

2000 (3)

S. Piazzolla y and B. K. Jenkins, “First-harmonic diffusion model for holographic grating formation in photopolymers”, J. Opt. Soc. Am. B 17, 1147–1157 (2000).
[Crossref]

J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer”, J. Opt. Soc. Am. A 17, 1008–1014 (2000).
[Crossref]

G. M. Karpov, V. V. Obukhovsky, T. N. Smirnova, and V. V. Lemeshko, “Spatial transfer of matter as method of holographic recording in photoformers”, Optics Communications 174, 391–404 (2000).
[Crossref]

1998 (2)

S. Blaya, L. Carretero, and A. Fimia. “Highly sensitive photopolymerisable dry film for use in real time holography,” Appl. Phys. Lett.,  75, 1628–1630 (1998).
[Crossref]

I. Aubrecht, M. Miler y, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[Crossref]

1997 (4)

J. Lougnot, P. Jost y, and L. Lavielle, “Polymers for holographic recording: VI. Some Basic ideas for modelling the Kinetics of the recording process,” Pure and Appl. Opt. 6, 225–245 (1997).
[Crossref]

D. A. Walkman, H-Y. S. Li, and M. G. Horner, “Volume Shrinkage in Slant Fringe Gratings of a Cationic Ring-Opening Holographic Recording Material,” J. Im. Science and Technology 41, 497–514 (1997).

V. L Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers”, Journal of Applied Physics 81, 5913–5923 (1997).
[Crossref]

J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording: VI. Some Basic ideas for modelling the Kinetics of the recording process”, Pure and Appl. Opt. 6, 225–245 (1997).
[Crossref]

1996 (1)

A. Pu, K. Curtis, and P. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824–2829 (1996).
[Crossref]

1994 (1)

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymers materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[Crossref]

1991 (1)

R. R. Adhami, D. J. Lanteigne, and D. A. Gregory, “Photopolymer hologram formation theory”, Microwave Optics Technology Letters 4, 106–109 (1991).
[Crossref]

1988 (1)

T. Ingwall and M. Troll, “The mechanism of hologram formation in DMP-128 photopolymer, in Holographic Optics: Design and Applications,” Proc. SPIE 883, 94 (1988).

1973 (2)

J. M. Moran and I. P. Kaminow, “Properties of holographic gratings photoinduced in polymethyl methacrylate,” Appl. Opt. 12, 1964–1970 (1973).
[Crossref] [PubMed]

N. Uchida, “Calculation of diffraction efficiency in hologram gratings attenuated along the direction perpendicular to the grating vector,” J. Opt. Soc. Am. A 63, 280–285 (1973).
[Crossref]

1969 (1)

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F.J. McClung, “Hologram recorded on photopolymer holographic recording material,” Appl. Phys. Lett. 14, 159–160 (1969).
[Crossref]

Acebal, P.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers”, Applied Physics B 77, 639–662 (2003).
[Crossref]

Adhami, R. R.

R. R. Adhami, D. J. Lanteigne, and D. A. Gregory, “Photopolymer hologram formation theory”, Microwave Optics Technology Letters 4, 106–109 (1991).
[Crossref]

Álvarez, M.

Aubrecht, I.

I. Aubrecht, M. Miler y, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[Crossref]

Beléndez, A.

S. Gallego, C. Neipp, M. Ortuño, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers” Opt. Express 13, 1939–1947 (2005).
[Crossref] [PubMed]

C. Neipp, J. T. Sheridan, S. Gallego, M. Ortuño, A. Márquez, I. Pascual, and A. Beléndez, “Effect of a depth attenuated refractive index profile in the angular responses of the efficiency of higher orders in volume gratings recorded in a PVA/Acrylamide photopolymer” Opt. Comm. 233, 311–322 (2004).
[Crossref]

S. Gallego, C. Neipp, M. Ortuño, A. Beléndez, and I. Pascual “Stabilization of volume gratings recorded in PVA/acrylamide photopolymers with diffraction efficiencies higher than 90%,” J. Mod. Opt. 51, 491–503 (2004).
[Crossref]

S. Gallego, C. Neipp, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual “Diffusion based model to predict the conservation of holographic gratings recorded in PVA/Acrylamide photopolymer,” Appl. Opt. 42, 5839–5845 (2003).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, C. García, A. Beléndez, and I. Pascual, “Temporal evolution of the angular response of a holographic diffraction grating in PVA/acrylamide photopolymer,” Opt. Express 11, 181–190 (2003).
[Crossref] [PubMed]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[Crossref]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835–1843 (2003).
[Crossref] [PubMed]

Neipp, S. Gallego, M. Ortuño, A. Márquez, M. Álvarez, A. Beléndez, and I. Pascual “First harmonic diffusion based model applied to a PVA/Acrylamida based photopolymer,” J. Opt. Soc. Am. B,  20, 2052–2060 (2003).
[Crossref]

Márquez, C. Neipp, S. Gallego, M. Ortuño, I. Pascual, and A. Beléndez, “Holographically edge enhanced image formation system,” Opt. Lett. 28, 1510–1512 (2003).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, and I. Pascual, “Characterization of PVA/AA holographic memories using first harmonic diffusion model,” Appl. Opt. Accepted by minor revision.

S. Gallego, C. Neipp, M. Ortuño, A. Márquez, I. Pascual, and A. Beléndez “Optical and physical thickness of holographic diffraction gratings recorded in photopolymers,” Opto Ireland, SPIE Europe.

Blaya, S.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers”, Applied Physics B 77, 639–662 (2003).
[Crossref]

S. Blaya, L. Carretero, and A. Fimia. “Highly sensitive photopolymerisable dry film for use in real time holography,” Appl. Phys. Lett.,  75, 1628–1630 (1998).
[Crossref]

Brault, R. G.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F.J. McClung, “Hologram recorded on photopolymer holographic recording material,” Appl. Phys. Lett. 14, 159–160 (1969).
[Crossref]

Carretero, L.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers”, Applied Physics B 77, 639–662 (2003).
[Crossref]

S. Blaya, L. Carretero, and A. Fimia. “Highly sensitive photopolymerisable dry film for use in real time holography,” Appl. Phys. Lett.,  75, 1628–1630 (1998).
[Crossref]

Close, D. H.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F.J. McClung, “Hologram recorded on photopolymer holographic recording material,” Appl. Phys. Lett. 14, 159–160 (1969).
[Crossref]

Colvin, V. L

V. L Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers”, Journal of Applied Physics 81, 5913–5923 (1997).
[Crossref]

Coufal, H. J.

H. J. Coufal and D. Psaltis, Holographic Data Storage, G. T. Sincerbox, Springer-Verlag, New York, 2000.

Curtis, K.

A. Pu, K. Curtis, and P. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824–2829 (1996).
[Crossref]

Fimia, A.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers”, Applied Physics B 77, 639–662 (2003).
[Crossref]

S. Blaya, L. Carretero, and A. Fimia. “Highly sensitive photopolymerisable dry film for use in real time holography,” Appl. Phys. Lett.,  75, 1628–1630 (1998).
[Crossref]

Gallego, S.

S. Gallego, C. Neipp, M. Ortuño, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers” Opt. Express 13, 1939–1947 (2005).
[Crossref] [PubMed]

C. Neipp, J. T. Sheridan, S. Gallego, M. Ortuño, A. Márquez, I. Pascual, and A. Beléndez, “Effect of a depth attenuated refractive index profile in the angular responses of the efficiency of higher orders in volume gratings recorded in a PVA/Acrylamide photopolymer” Opt. Comm. 233, 311–322 (2004).
[Crossref]

S. Gallego, C. Neipp, M. Ortuño, A. Beléndez, and I. Pascual “Stabilization of volume gratings recorded in PVA/acrylamide photopolymers with diffraction efficiencies higher than 90%,” J. Mod. Opt. 51, 491–503 (2004).
[Crossref]

S. Gallego, C. Neipp, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual “Diffusion based model to predict the conservation of holographic gratings recorded in PVA/Acrylamide photopolymer,” Appl. Opt. 42, 5839–5845 (2003).
[Crossref] [PubMed]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[Crossref]

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt. 42 (35) 7008–7012 (2003).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, C. García, A. Beléndez, and I. Pascual, “Temporal evolution of the angular response of a holographic diffraction grating in PVA/acrylamide photopolymer,” Opt. Express 11, 181–190 (2003).
[Crossref] [PubMed]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835–1843 (2003).
[Crossref] [PubMed]

Márquez, C. Neipp, S. Gallego, M. Ortuño, I. Pascual, and A. Beléndez, “Holographically edge enhanced image formation system,” Opt. Lett. 28, 1510–1512 (2003).
[Crossref] [PubMed]

Neipp, S. Gallego, M. Ortuño, A. Márquez, M. Álvarez, A. Beléndez, and I. Pascual “First harmonic diffusion based model applied to a PVA/Acrylamida based photopolymer,” J. Opt. Soc. Am. B,  20, 2052–2060 (2003).
[Crossref]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, and I. Pascual, “Characterization of PVA/AA holographic memories using first harmonic diffusion model,” Appl. Opt. Accepted by minor revision.

S. Gallego, C. Neipp, M. Ortuño, A. Márquez, I. Pascual, and A. Beléndez “Optical and physical thickness of holographic diffraction gratings recorded in photopolymers,” Opto Ireland, SPIE Europe.

García, C.

Gregory, D. A.

R. R. Adhami, D. J. Lanteigne, and D. A. Gregory, “Photopolymer hologram formation theory”, Microwave Optics Technology Letters 4, 106–109 (1991).
[Crossref]

Harris, A. L.

V. L Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers”, Journal of Applied Physics 81, 5913–5923 (1997).
[Crossref]

Horner, M. G.

D. A. Walkman, H-Y. S. Li, and M. G. Horner, “Volume Shrinkage in Slant Fringe Gratings of a Cationic Ring-Opening Holographic Recording Material,” J. Im. Science and Technology 41, 497–514 (1997).

Ingwall, T.

T. Ingwall and M. Troll, “The mechanism of hologram formation in DMP-128 photopolymer, in Holographic Optics: Design and Applications,” Proc. SPIE 883, 94 (1988).

Jacobson, A. D.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F.J. McClung, “Hologram recorded on photopolymer holographic recording material,” Appl. Phys. Lett. 14, 159–160 (1969).
[Crossref]

Jenkins, B. K.

Jost, P.

J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording: VI. Some Basic ideas for modelling the Kinetics of the recording process”, Pure and Appl. Opt. 6, 225–245 (1997).
[Crossref]

Jost y, P.

J. Lougnot, P. Jost y, and L. Lavielle, “Polymers for holographic recording: VI. Some Basic ideas for modelling the Kinetics of the recording process,” Pure and Appl. Opt. 6, 225–245 (1997).
[Crossref]

Kaminow, I. P.

Karpov, G. M.

G. M. Karpov, V. V. Obukhovsky, T. N. Smirnova, and V. V. Lemeshko, “Spatial transfer of matter as method of holographic recording in photoformers”, Optics Communications 174, 391–404 (2000).
[Crossref]

Kelly, J. V.

Koudela, I.

I. Aubrecht, M. Miler y, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[Crossref]

Lanteigne, D. J.

R. R. Adhami, D. J. Lanteigne, and D. A. Gregory, “Photopolymer hologram formation theory”, Microwave Optics Technology Letters 4, 106–109 (1991).
[Crossref]

Larson, R. G.

V. L Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers”, Journal of Applied Physics 81, 5913–5923 (1997).
[Crossref]

Lavielle, L.

J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording: VI. Some Basic ideas for modelling the Kinetics of the recording process”, Pure and Appl. Opt. 6, 225–245 (1997).
[Crossref]

J. Lougnot, P. Jost y, and L. Lavielle, “Polymers for holographic recording: VI. Some Basic ideas for modelling the Kinetics of the recording process,” Pure and Appl. Opt. 6, 225–245 (1997).
[Crossref]

Lawrence, J. R.

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik,  112, 449–463 (2001).
[Crossref]

J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer”, J. Opt. Soc. Am. A 17, 1008–1014 (2000).
[Crossref]

Lemeshko, V. V.

G. M. Karpov, V. V. Obukhovsky, T. N. Smirnova, and V. V. Lemeshko, “Spatial transfer of matter as method of holographic recording in photoformers”, Optics Communications 174, 391–404 (2000).
[Crossref]

Li, H-Y. S.

D. A. Walkman, H-Y. S. Li, and M. G. Horner, “Volume Shrinkage in Slant Fringe Gratings of a Cationic Ring-Opening Holographic Recording Material,” J. Im. Science and Technology 41, 497–514 (1997).

Lion, Y.

V. Moreau, Y. Renotte, and Y. Lion, “Characterization of DuPont photopolymer: determination of kinetic parameters in a diffusion model”, Applied Optics 41, 3427–3435 (2002).
[Crossref] [PubMed]

Lougnot, J.

J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording: VI. Some Basic ideas for modelling the Kinetics of the recording process”, Pure and Appl. Opt. 6, 225–245 (1997).
[Crossref]

J. Lougnot, P. Jost y, and L. Lavielle, “Polymers for holographic recording: VI. Some Basic ideas for modelling the Kinetics of the recording process,” Pure and Appl. Opt. 6, 225–245 (1997).
[Crossref]

Madrigal, R. F.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers”, Applied Physics B 77, 639–662 (2003).
[Crossref]

Margerum, J. D.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F.J. McClung, “Hologram recorded on photopolymer holographic recording material,” Appl. Phys. Lett. 14, 159–160 (1969).
[Crossref]

Márquez,

Márquez, A.

S. Gallego, C. Neipp, M. Ortuño, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers” Opt. Express 13, 1939–1947 (2005).
[Crossref] [PubMed]

C. Neipp, J. T. Sheridan, S. Gallego, M. Ortuño, A. Márquez, I. Pascual, and A. Beléndez, “Effect of a depth attenuated refractive index profile in the angular responses of the efficiency of higher orders in volume gratings recorded in a PVA/Acrylamide photopolymer” Opt. Comm. 233, 311–322 (2004).
[Crossref]

Neipp, S. Gallego, M. Ortuño, A. Márquez, M. Álvarez, A. Beléndez, and I. Pascual “First harmonic diffusion based model applied to a PVA/Acrylamida based photopolymer,” J. Opt. Soc. Am. B,  20, 2052–2060 (2003).
[Crossref]

S. Gallego, C. Neipp, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual “Diffusion based model to predict the conservation of holographic gratings recorded in PVA/Acrylamide photopolymer,” Appl. Opt. 42, 5839–5845 (2003).
[Crossref] [PubMed]

S. Gallego, C. Neipp, M. Ortuño, A. Márquez, I. Pascual, and A. Beléndez “Optical and physical thickness of holographic diffraction gratings recorded in photopolymers,” Opto Ireland, SPIE Europe.

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, and I. Pascual, “Characterization of PVA/AA holographic memories using first harmonic diffusion model,” Appl. Opt. Accepted by minor revision.

McClung, F.J.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F.J. McClung, “Hologram recorded on photopolymer holographic recording material,” Appl. Phys. Lett. 14, 159–160 (1969).
[Crossref]

Miler y, M.

I. Aubrecht, M. Miler y, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[Crossref]

Moran, J. M.

Moreau, V.

V. Moreau, Y. Renotte, and Y. Lion, “Characterization of DuPont photopolymer: determination of kinetic parameters in a diffusion model”, Applied Optics 41, 3427–3435 (2002).
[Crossref] [PubMed]

Mouroulis, P.

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymers materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[Crossref]

Neipp,

Neipp, C.

S. Gallego, C. Neipp, M. Ortuño, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers” Opt. Express 13, 1939–1947 (2005).
[Crossref] [PubMed]

C. Neipp, J. T. Sheridan, S. Gallego, M. Ortuño, A. Márquez, I. Pascual, and A. Beléndez, “Effect of a depth attenuated refractive index profile in the angular responses of the efficiency of higher orders in volume gratings recorded in a PVA/Acrylamide photopolymer” Opt. Comm. 233, 311–322 (2004).
[Crossref]

S. Gallego, C. Neipp, M. Ortuño, A. Beléndez, and I. Pascual “Stabilization of volume gratings recorded in PVA/acrylamide photopolymers with diffraction efficiencies higher than 90%,” J. Mod. Opt. 51, 491–503 (2004).
[Crossref]

S. Gallego, C. Neipp, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual “Diffusion based model to predict the conservation of holographic gratings recorded in PVA/Acrylamide photopolymer,” Appl. Opt. 42, 5839–5845 (2003).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, C. García, A. Beléndez, and I. Pascual, “Temporal evolution of the angular response of a holographic diffraction grating in PVA/acrylamide photopolymer,” Opt. Express 11, 181–190 (2003).
[Crossref] [PubMed]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[Crossref]

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt. 42 (35) 7008–7012 (2003).
[Crossref] [PubMed]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835–1843 (2003).
[Crossref] [PubMed]

Márquez, C. Neipp, S. Gallego, M. Ortuño, I. Pascual, and A. Beléndez, “Holographically edge enhanced image formation system,” Opt. Lett. 28, 1510–1512 (2003).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, and I. Pascual, “Characterization of PVA/AA holographic memories using first harmonic diffusion model,” Appl. Opt. Accepted by minor revision.

S. Gallego, C. Neipp, M. Ortuño, A. Márquez, I. Pascual, and A. Beléndez “Optical and physical thickness of holographic diffraction gratings recorded in photopolymers,” Opto Ireland, SPIE Europe.

O’Neill, F. T.

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik,  112, 449–463 (2001).
[Crossref]

Obukhovsky, V. V.

G. M. Karpov, V. V. Obukhovsky, T. N. Smirnova, and V. V. Lemeshko, “Spatial transfer of matter as method of holographic recording in photoformers”, Optics Communications 174, 391–404 (2000).
[Crossref]

Ortuño, M.

S. Gallego, C. Neipp, M. Ortuño, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers” Opt. Express 13, 1939–1947 (2005).
[Crossref] [PubMed]

C. Neipp, J. T. Sheridan, S. Gallego, M. Ortuño, A. Márquez, I. Pascual, and A. Beléndez, “Effect of a depth attenuated refractive index profile in the angular responses of the efficiency of higher orders in volume gratings recorded in a PVA/Acrylamide photopolymer” Opt. Comm. 233, 311–322 (2004).
[Crossref]

S. Gallego, C. Neipp, M. Ortuño, A. Beléndez, and I. Pascual “Stabilization of volume gratings recorded in PVA/acrylamide photopolymers with diffraction efficiencies higher than 90%,” J. Mod. Opt. 51, 491–503 (2004).
[Crossref]

S. Gallego, C. Neipp, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual “Diffusion based model to predict the conservation of holographic gratings recorded in PVA/Acrylamide photopolymer,” Appl. Opt. 42, 5839–5845 (2003).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, C. García, A. Beléndez, and I. Pascual, “Temporal evolution of the angular response of a holographic diffraction grating in PVA/acrylamide photopolymer,” Opt. Express 11, 181–190 (2003).
[Crossref] [PubMed]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[Crossref]

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt. 42 (35) 7008–7012 (2003).
[Crossref] [PubMed]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835–1843 (2003).
[Crossref] [PubMed]

Neipp, S. Gallego, M. Ortuño, A. Márquez, M. Álvarez, A. Beléndez, and I. Pascual “First harmonic diffusion based model applied to a PVA/Acrylamida based photopolymer,” J. Opt. Soc. Am. B,  20, 2052–2060 (2003).
[Crossref]

Márquez, C. Neipp, S. Gallego, M. Ortuño, I. Pascual, and A. Beléndez, “Holographically edge enhanced image formation system,” Opt. Lett. 28, 1510–1512 (2003).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, and I. Pascual, “Characterization of PVA/AA holographic memories using first harmonic diffusion model,” Appl. Opt. Accepted by minor revision.

S. Gallego, C. Neipp, M. Ortuño, A. Márquez, I. Pascual, and A. Beléndez “Optical and physical thickness of holographic diffraction gratings recorded in photopolymers,” Opto Ireland, SPIE Europe.

Pascual, I.

S. Gallego, C. Neipp, M. Ortuño, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers” Opt. Express 13, 1939–1947 (2005).
[Crossref] [PubMed]

C. Neipp, J. T. Sheridan, S. Gallego, M. Ortuño, A. Márquez, I. Pascual, and A. Beléndez, “Effect of a depth attenuated refractive index profile in the angular responses of the efficiency of higher orders in volume gratings recorded in a PVA/Acrylamide photopolymer” Opt. Comm. 233, 311–322 (2004).
[Crossref]

S. Gallego, C. Neipp, M. Ortuño, A. Beléndez, and I. Pascual “Stabilization of volume gratings recorded in PVA/acrylamide photopolymers with diffraction efficiencies higher than 90%,” J. Mod. Opt. 51, 491–503 (2004).
[Crossref]

S. Gallego, C. Neipp, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual “Diffusion based model to predict the conservation of holographic gratings recorded in PVA/Acrylamide photopolymer,” Appl. Opt. 42, 5839–5845 (2003).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, C. García, A. Beléndez, and I. Pascual, “Temporal evolution of the angular response of a holographic diffraction grating in PVA/acrylamide photopolymer,” Opt. Express 11, 181–190 (2003).
[Crossref] [PubMed]

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt. 42 (35) 7008–7012 (2003).
[Crossref] [PubMed]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[Crossref]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835–1843 (2003).
[Crossref] [PubMed]

Neipp, S. Gallego, M. Ortuño, A. Márquez, M. Álvarez, A. Beléndez, and I. Pascual “First harmonic diffusion based model applied to a PVA/Acrylamida based photopolymer,” J. Opt. Soc. Am. B,  20, 2052–2060 (2003).
[Crossref]

Márquez, C. Neipp, S. Gallego, M. Ortuño, I. Pascual, and A. Beléndez, “Holographically edge enhanced image formation system,” Opt. Lett. 28, 1510–1512 (2003).
[Crossref] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, and I. Pascual, “Characterization of PVA/AA holographic memories using first harmonic diffusion model,” Appl. Opt. Accepted by minor revision.

S. Gallego, C. Neipp, M. Ortuño, A. Márquez, I. Pascual, and A. Beléndez “Optical and physical thickness of holographic diffraction gratings recorded in photopolymers,” Opto Ireland, SPIE Europe.

Piazzolla y, S.

Psaltis, D.

H. J. Coufal and D. Psaltis, Holographic Data Storage, G. T. Sincerbox, Springer-Verlag, New York, 2000.

Psaltis, P.

A. Pu, K. Curtis, and P. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824–2829 (1996).
[Crossref]

Pu, A.

A. Pu, K. Curtis, and P. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824–2829 (1996).
[Crossref]

Renotte, Y.

V. Moreau, Y. Renotte, and Y. Lion, “Characterization of DuPont photopolymer: determination of kinetic parameters in a diffusion model”, Applied Optics 41, 3427–3435 (2002).
[Crossref] [PubMed]

Schilling, M. L.

V. L Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers”, Journal of Applied Physics 81, 5913–5923 (1997).
[Crossref]

Sheridan, J. T.

S. Gallego, C. Neipp, M. Ortuño, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers” Opt. Express 13, 1939–1947 (2005).
[Crossref] [PubMed]

C. Neipp, J. T. Sheridan, S. Gallego, M. Ortuño, A. Márquez, I. Pascual, and A. Beléndez, “Effect of a depth attenuated refractive index profile in the angular responses of the efficiency of higher orders in volume gratings recorded in a PVA/Acrylamide photopolymer” Opt. Comm. 233, 311–322 (2004).
[Crossref]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835–1843 (2003).
[Crossref] [PubMed]

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik,  112, 449–463 (2001).
[Crossref]

J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer”, J. Opt. Soc. Am. A 17, 1008–1014 (2000).
[Crossref]

Smirnova, T. N.

G. M. Karpov, V. V. Obukhovsky, T. N. Smirnova, and V. V. Lemeshko, “Spatial transfer of matter as method of holographic recording in photoformers”, Optics Communications 174, 391–404 (2000).
[Crossref]

Troll, M.

T. Ingwall and M. Troll, “The mechanism of hologram formation in DMP-128 photopolymer, in Holographic Optics: Design and Applications,” Proc. SPIE 883, 94 (1988).

Uchida, N.

N. Uchida, “Calculation of diffraction efficiency in hologram gratings attenuated along the direction perpendicular to the grating vector,” J. Opt. Soc. Am. A 63, 280–285 (1973).
[Crossref]

Ulibarrena, M.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers”, Applied Physics B 77, 639–662 (2003).
[Crossref]

Walkman, D. A.

D. A. Walkman, H-Y. S. Li, and M. G. Horner, “Volume Shrinkage in Slant Fringe Gratings of a Cationic Ring-Opening Holographic Recording Material,” J. Im. Science and Technology 41, 497–514 (1997).

Zhao, G.

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymers materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (1)

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[Crossref]

Appl. Phys. Lett. (2)

S. Blaya, L. Carretero, and A. Fimia. “Highly sensitive photopolymerisable dry film for use in real time holography,” Appl. Phys. Lett.,  75, 1628–1630 (1998).
[Crossref]

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F.J. McClung, “Hologram recorded on photopolymer holographic recording material,” Appl. Phys. Lett. 14, 159–160 (1969).
[Crossref]

Applied Optics (1)

V. Moreau, Y. Renotte, and Y. Lion, “Characterization of DuPont photopolymer: determination of kinetic parameters in a diffusion model”, Applied Optics 41, 3427–3435 (2002).
[Crossref] [PubMed]

Applied Physics B (1)

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers”, Applied Physics B 77, 639–662 (2003).
[Crossref]

J. Im. Science and Technology (1)

D. A. Walkman, H-Y. S. Li, and M. G. Horner, “Volume Shrinkage in Slant Fringe Gratings of a Cationic Ring-Opening Holographic Recording Material,” J. Im. Science and Technology 41, 497–514 (1997).

J. Mod. Opt. (3)

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymers materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[Crossref]

S. Gallego, C. Neipp, M. Ortuño, A. Beléndez, and I. Pascual “Stabilization of volume gratings recorded in PVA/acrylamide photopolymers with diffraction efficiencies higher than 90%,” J. Mod. Opt. 51, 491–503 (2004).
[Crossref]

I. Aubrecht, M. Miler y, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[Crossref]

J. Opt. Soc. Am. A (2)

N. Uchida, “Calculation of diffraction efficiency in hologram gratings attenuated along the direction perpendicular to the grating vector,” J. Opt. Soc. Am. A 63, 280–285 (1973).
[Crossref]

J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer”, J. Opt. Soc. Am. A 17, 1008–1014 (2000).
[Crossref]

J. Opt. Soc. Am. B (2)

Journal of Applied Physics (1)

V. L Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers”, Journal of Applied Physics 81, 5913–5923 (1997).
[Crossref]

Microwave Optics Technology Letters (1)

R. R. Adhami, D. J. Lanteigne, and D. A. Gregory, “Photopolymer hologram formation theory”, Microwave Optics Technology Letters 4, 106–109 (1991).
[Crossref]

Opt. Comm. (1)

C. Neipp, J. T. Sheridan, S. Gallego, M. Ortuño, A. Márquez, I. Pascual, and A. Beléndez, “Effect of a depth attenuated refractive index profile in the angular responses of the efficiency of higher orders in volume gratings recorded in a PVA/Acrylamide photopolymer” Opt. Comm. 233, 311–322 (2004).
[Crossref]

Opt. Eng. (1)

A. Pu, K. Curtis, and P. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824–2829 (1996).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Optics Communications (1)

G. M. Karpov, V. V. Obukhovsky, T. N. Smirnova, and V. V. Lemeshko, “Spatial transfer of matter as method of holographic recording in photoformers”, Optics Communications 174, 391–404 (2000).
[Crossref]

Optik (1)

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik,  112, 449–463 (2001).
[Crossref]

Proc. SPIE (1)

T. Ingwall and M. Troll, “The mechanism of hologram formation in DMP-128 photopolymer, in Holographic Optics: Design and Applications,” Proc. SPIE 883, 94 (1988).

Pure and Appl. Opt. (2)

J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording: VI. Some Basic ideas for modelling the Kinetics of the recording process”, Pure and Appl. Opt. 6, 225–245 (1997).
[Crossref]

J. Lougnot, P. Jost y, and L. Lavielle, “Polymers for holographic recording: VI. Some Basic ideas for modelling the Kinetics of the recording process,” Pure and Appl. Opt. 6, 225–245 (1997).
[Crossref]

Other (3)

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, and I. Pascual, “Characterization of PVA/AA holographic memories using first harmonic diffusion model,” Appl. Opt. Accepted by minor revision.

H. J. Coufal and D. Psaltis, Holographic Data Storage, G. T. Sincerbox, Springer-Verlag, New York, 2000.

S. Gallego, C. Neipp, M. Ortuño, A. Márquez, I. Pascual, and A. Beléndez “Optical and physical thickness of holographic diffraction gratings recorded in photopolymers,” Opto Ireland, SPIE Europe.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Transmission of a.800 µm thick layer as function of exposure time.

Fig. 2.
Fig. 2.

Holographic grating structure

Fig. 3.
Fig. 3.

Refractive index distribution within the photopolymer for three different recording times (15 s, 40 s and 100 s) for standard parameters (D~10-11cm2/s and R~1.25).

Fig. 4.
Fig. 4.

Refractive index modulation distribution within the photopolymer versus thickness and time for standard parameters (D~10-11cm2/s and R~1.25).

Fig. 5.
Fig. 5.

Refractive index distribution within the photopolymer for three different recording times (15 s, 40 s and 100 s) for usual parameters of viscous photopolymers: D~2×10-13cm2/s and R~0.02.

Fig. 6.
Fig. 6.

Refractive index distribution within the photopolymer versus thickness and time for usual parameters of viscous photopolymers: D~2×10-13 cm2/s and R~0.02.

Fig. 7.
Fig. 7.

Refractive index distribution within the photopolymer for three different recording times (15 s, 40 s and 100 s) for usual parameters of liquid systems: D~5×10-9cm2/s and R~60.

Fig. 8.
Fig. 8.

Refractive index distribution within the photopolymer as function of thickness and time for usual parameters of liquid systems: D~5×10-9cm2/s and R~60.

Fig. 9.
Fig. 9.

Refractive index distribution within the photopolymer for three different recording times (15 s, 40 s and 100 s) and for a high dye concentration (α=0.01 µm-1).

Fig. 10.
Fig. 10.

Refractive index distribution within the photopolymer as function of thickness and time for high dye concentration (α=0.01 µm-1).

Fig. 11.
Fig. 11.

Refractive index distribution within the photopolymer for three different recording times (15 s, 40 s and 100 s) and α=0.003 µm-1.

Fig. 12.
Fig. 12.

Refractive index distribution within the photopolymer as function of thickness and time with α=0.003 µm-1.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I ( x ) = I 0 [ 1 + V cos ( K g x ) ]
I ( x , z ) = I 0 [ 1 + V cos ( K g x ) ] e α ( t ) z
α ( t ) = α 0 e K α I 0 β t
[ M ] ( x , z , t ) t = x D [ M ] ( x , z , t ) x k R ( t ) I γ ( x , z , t ) [ M ] ( x , z , t ) + z D [ M ] ( x , z , t ) z ,
[ P ] ( x , z , t ) t = k R ( t ) I γ ( x , z , t ) [ M ] ( x , z , t )
k R ( t ) = k R exp ( φ I 0 t )
τ D = 1 D K g 2
[ M ] ( x , z , t ) x [ M ] ( x , z , t ) z
d = g = 1 G d g
n 1 = ( n dark 2 + 2 ) 2 6 n dark [ ( n m 2 1 n m 2 + 2 n b 2 1 n b 2 + 2 ) 2 [ M ] 1 + ( n p 2 1 n p 2 + 2 n b 2 1 n b 2 + 2 ) [ P ] 1 ]
R = D K g 2 k R I 0

Metrics