Abstract

We demonstrate a high-speed, frequency swept, 1300 nm laser source for frequency domain reflectometry and OCT with Fourier domain/swept-source detection. The laser uses a fiber coupled, semiconductor amplifier and a tunable fiber Fabry-Perot filter. We present scaling principles which predict the maximum frequency sweep speed and trade offs in output power, noise and instantaneous linewidth performance. The use of an amplification stage for increasing output power and for spectral shaping is discussed in detail. The laser generates ~45 mW instantaneous peak power at 20 kHz sweep rates with a tuning range of ~120 nm full width. In frequency domain reflectometry and OCT applications the frequency swept laser achieves 108 dB sensitivity and ~10 μm axial resolution in tissue. We also present a fast algorithm for real time calibration of the fringe signal to equally spaced sampling in frequency for high speed OCT image preview.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef]
  2. B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, "Optical frequency- domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser," Opt. Lett. 22, 1704-1706 (1997).
  3. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997).
  4. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
  5. M. A. Choma, M. V. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183</a>
  6. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889."> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a>
  7. D. Uttam and B. Culshaw, "Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique," J. Lightwave Technol. 3, 971-977 (1985).
  8. H. Barfuss and E. Brinkmeyer, "Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems," J. Lightwave Technol. 7, 3-10 (1989).
    [CrossRef]
  9. U. Glombitza and E. Brinkmeyer, "Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides," J. Lightwave Technol. 11, 1377-1384 (1993).
    [CrossRef]
  10. W. V. Sorin and S. A. Newton, "Single-frequency output from a broadband-tunable external fiber-cavity laser," Opt. Lett. 13, 731-733 (1988).
  11. W. V. Sorin, D. K. Donald, S. A. Newton, and M. Nazarathy, "Coherent FMCW reflectometry using a temperature tuned Nd:YAG ring laser," IEEE Photon. Technol. Lett. 2, 902-904 (1990).
    [CrossRef]
  12. R. Ohba, I. Uehira, and S.-i. Kakuma, "Interferometric determination of a static optical path difference using a frequency swept laser diode," Measurement Science & Technology 1, 500-504 (1990).
    [CrossRef]
  13. S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
    [CrossRef]
  14. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983 (2003).
  15. S. H. Yun, D. J. Richardson, and B. Y. Kim, "Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser," Opt. Lett. 23, 843-845 (1998).
  16. K. Iiyama, L.-T. Wang, and K.-I. Hayashi, "Linearizing optical frequency-sweep of a laser diode for FMCW reflectometry," J. Lightwave Technol. 14, 173-178 (1996).
    [CrossRef]
  17. 957M. V. Sarunic, M. A. Choma, C. H. Yang, and J. A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers," Opt. Express 13, 957-967 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-957.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-957</a>
    [CrossRef]
  18. J. Zhang, J. S. Nelson, and Z. P. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147-149 (2005).
    [CrossRef]
  19. J. Zhang, W. G. Jung, J. S. Nelson, and Z. P. Chen, "Full range polarization-sensitive Fourier domain optical coherence tomography," Opt. Express 12, 6033-6039 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-6033.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-6033</a>
    [CrossRef]

IEEE Photon. Technol. Lett. (2)

W. V. Sorin, D. K. Donald, S. A. Newton, and M. Nazarathy, "Coherent FMCW reflectometry using a temperature tuned Nd:YAG ring laser," IEEE Photon. Technol. Lett. 2, 902-904 (1990).
[CrossRef]

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
[CrossRef]

J. Lightwave Technol. (4)

K. Iiyama, L.-T. Wang, and K.-I. Hayashi, "Linearizing optical frequency-sweep of a laser diode for FMCW reflectometry," J. Lightwave Technol. 14, 173-178 (1996).
[CrossRef]

D. Uttam and B. Culshaw, "Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique," J. Lightwave Technol. 3, 971-977 (1985).

H. Barfuss and E. Brinkmeyer, "Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems," J. Lightwave Technol. 7, 3-10 (1989).
[CrossRef]

U. Glombitza and E. Brinkmeyer, "Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides," J. Lightwave Technol. 11, 1377-1384 (1993).
[CrossRef]

Measurement Science & Technology (1)

R. Ohba, I. Uehira, and S.-i. Kakuma, "Interferometric determination of a static optical path difference using a frequency swept laser diode," Measurement Science & Technology 1, 500-504 (1990).
[CrossRef]

Opt. Express (4)

Opt. Lett. (7)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics