## Abstract

We demonstrate a high-speed, frequency swept, 1300 nm laser source for frequency domain reflectometry and OCT with Fourier domain/swept-source detection. The laser uses a fiber coupled, semiconductor amplifier and a tunable fiber Fabry-Perot filter. We present scaling principles which predict the maximum frequency sweep speed and trade offs in output power, noise and instantaneous linewidth performance. The use of an amplification stage for increasing output power and for spectral shaping is discussed in detail. The laser generates ~45 mW instantaneous peak power at 20 kHz sweep rates with a tuning range of ~120 nm full width. In frequency domain reflectometry and OCT applications the frequency swept laser achieves 108 dB sensitivity and ~10 µm axial resolution in tissue. We also present a fast algorithm for real time calibration of the fringe signal to equally spaced sampling in frequency for high speed OCT image preview.

© 2005 Optical Society of America

Full Article |

PDF Article
### Equations (7)

Equations on this page are rendered with MathJax. Learn more.

(1)
$$n=\frac{\mathrm{log}\left(\frac{{P}_{\mathit{sat}}}{{P}_{\mathit{ASE}}}\right)}{\mathrm{log}\left(\beta \right)},$$
(2)
$$\beta =G\xb7\rho ,$$
(3)
$${P}_{\mathit{ASE}}\approx \frac{\Delta \lambda}{\Delta {\lambda}_{\mathit{tuningrange}}}\xb7{P}_{\mathit{ASEtotal}},$$
(4)
$${\tau}_{\mathit{roundtrip}}=\frac{L\xb7{n}_{\mathit{ref}}}{c},$$
(5)
$${v}_{\mathit{tuning}}\approx \frac{\Delta \lambda}{n\xb7{\tau}_{\mathit{roundtrip}}}\approx \frac{\mathrm{log}\left(G\xb7\rho \right)\xb7c\xb7\Delta \lambda}{\mathrm{log}\left(\frac{{P}_{\mathit{sat}}\xb7\Delta {\lambda}_{\mathit{tuningrange}}}{\Delta \lambda \xb7{P}_{\mathit{ASEtotal}}}\right)\xb7L\xb7{n}_{\mathit{ref}}}.$$
(6)
$${f}_{\mathit{sweep}}\approx \frac{{v}_{\mathit{tuning}}\xb7\eta}{\Delta {\lambda}_{\mathit{tuningrange}}}\approx \frac{\mathrm{log}\left(G\xb7\rho \right)\xb7\Delta \lambda \xb7\eta \xb7c}{\mathrm{log}\left(\frac{{P}_{\mathit{sat}}\xb7\Delta {\lambda}_{\mathit{tuningrange}}}{\Delta \lambda \xb7{P}_{\mathit{ASEtotal}}}\right)\xb7L\xb7{n}_{\mathit{ref}}\xb7\text{}\Delta {\lambda}_{\mathit{tuningrange}}}.$$
(7)
$${f}_{\mathit{sin}\mathit{gle}}=\frac{\Delta \lambda \xb7c\xb7\eta}{\Delta {\lambda}_{\mathit{tuningrange}}\xb7L\xb7{n}_{\mathit{ref}}}.$$