Abstract

The spatial distribution of second-order nonlinearity in thermally poled optical fibers was characterized by second-harmonic microscopy. The second-order nonlinearity was found to be confined to a thin layer close to the anode surface and progressed further into the silica as the poling time increased. Position uncertainty of the anode metal wire was observed to have an effect, as the nonlinear layers were found not always symmetrically located around the nearest points between the anode and cathode. Optical microscopy results were obtained on etched poled fiber cross-sections and compared with those from second-harmonic microscopy.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, �??Large second-order nonlinearity in poled fused silica,�?? Opt. Lett. 16, 1732-1734 (1991).
  2. P. G. Kazansky, L. Dong, and P. St. J. Russell, �??High second-order nonlinearities in poled silicate fibers,�?? Opt. Lett. 19, 701-703 (1994).
  3. D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, �??Frozen-in electrical field in thermally poled fibers,�?? Opt. Fiber Technol. 5, 235-241 (1999).
    [CrossRef]
  4. J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, �??Poling of silica with silver-containing electrodes,�?? Electron. Lett. 36, 1635-1636 (2000).
    [CrossRef]
  5. C. Corbari, O. Deparis, B. G. Klappauf, and P. G. Kazansky, �??Practical technique for measurement of second-order nonlinearity in poled glass,�?? Electron. Lett. 39, 197-198 (2003).
  6. A. Ozcan, M. J. F. Digonnet, and G. S. Kino, �??Inverse Fourier transform technique to determine second-order optical nonlinearity spatial profiles,�?? Appl. Phys. Lett. 82, 1362-1364 (2003).
    [CrossRef]
  7. A. Ozcan, M. J. F. Digonnet, and G. S. Kino, �??Improved technique to determine second-order optical nonlinearity profiles using two different samples,�?? Appl. Phys. Lett. 84, 681-683 (2004).
    [CrossRef]
  8. W. Margulis and F. Laurell, �??Interferometric study of poled glass under etching,�?? Opt. Lett. 21, 1786-1788 (1996).
  9. T. G. Alley and S. R. J. Brueck, �??Visualization of the nonlinear optical space-charge region of bulk thermally poled fused-silica glass,�?? Opt. Lett. 23, 1170-1172 (1998).
  10. A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, �??Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution,�?? Appl. Phys. Lett. 83, 3623-3625 (2003).
    [CrossRef]
  11. H. An, S. Fleming, and G. Cox, �??Visualization of second-order nonlinear layer in thermally poled fused silica glass,�?? Appl. Phys. Lett. 85, 5819-5821 (2004).
    [CrossRef]
  12. T. G. Alley, S. R. J. Brueck, and R. A. Myers, �??Space charge dynamics in thermally poled fused silica,�?? J. Non-Cryst. Solids 242, 165-176 (1998).
    [CrossRef]
  13. M. Fokine, L. E. Nilsson, �?. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, �??Integrated fiber Mach�??Zehnder interferometer for electro-optic switching,�?? Opt. Lett. 27, 1643-1645 (2002).
  14. P. Blazkiewicz, W. Xu, D. Wong, and S. Fleming, �??Mechanism for thermal poling in twin-hole silicate fibers,�?? J. Opt. Soc. Am. B 19, 870-874 (2002).
  15. N. Myrén, H. Olsson, L. Norin, N. Sjödin, P. Helander, J. Svennebrink, and W. Margulis, �??Wide wedge-shaped depletion region in thermally poled fiber with alloy electrodes,�?? Opt. Express 12, 6093-6099 (2004), <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6093">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6093</a>.

Appl. Phys. Lett. (4)

A. Ozcan, M. J. F. Digonnet, and G. S. Kino, �??Inverse Fourier transform technique to determine second-order optical nonlinearity spatial profiles,�?? Appl. Phys. Lett. 82, 1362-1364 (2003).
[CrossRef]

A. Ozcan, M. J. F. Digonnet, and G. S. Kino, �??Improved technique to determine second-order optical nonlinearity profiles using two different samples,�?? Appl. Phys. Lett. 84, 681-683 (2004).
[CrossRef]

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, �??Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution,�?? Appl. Phys. Lett. 83, 3623-3625 (2003).
[CrossRef]

H. An, S. Fleming, and G. Cox, �??Visualization of second-order nonlinear layer in thermally poled fused silica glass,�?? Appl. Phys. Lett. 85, 5819-5821 (2004).
[CrossRef]

Electron. Lett. (1)

J. Arentoft, M. Kristensen, K. Pedersen, S. I. Bozhevolnyi, and P. Shi, �??Poling of silica with silver-containing electrodes,�?? Electron. Lett. 36, 1635-1636 (2000).
[CrossRef]

J. Non-Cryst. Solids (1)

T. G. Alley, S. R. J. Brueck, and R. A. Myers, �??Space charge dynamics in thermally poled fused silica,�?? J. Non-Cryst. Solids 242, 165-176 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

N. Myrén, H. Olsson, L. Norin, N. Sjödin, P. Helander, J. Svennebrink, and W. Margulis, �??Wide wedge-shaped depletion region in thermally poled fiber with alloy electrodes,�?? Opt. Express 12, 6093-6099 (2004), <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6093">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6093</a>.

Opt. Fiber Technol. (1)

D. Wong, W. Xu, S. Fleming, M. Janos, and K. M. Lo, �??Frozen-in electrical field in thermally poled fibers,�?? Opt. Fiber Technol. 5, 235-241 (1999).
[CrossRef]

Opt. Lett. (5)

Practical technique for measurement of s (1)

C. Corbari, O. Deparis, B. G. Klappauf, and P. G. Kazansky, �??Practical technique for measurement of second-order nonlinearity in poled glass,�?? Electron. Lett. 39, 197-198 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics