Abstract

We demonstrate an environmentally-stable mode-locked ytterbium fiber laser. The large birefringence of hollow-core photonic bandgap fiber allows it to control polarization in the laser while it provides the anomalous dispersion necessary for stretched-pulse operation. The laser generates 1-nJ pulses, which are dechirped to 70 fs.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. Lim, F. �?. Ilday, and F. W. Wise, �??Generation of 2-nJ pulses from a femtosecond Yb fiber laser,�?? Opt. Lett. 28, 660-662 (2003).
    [CrossRef] [PubMed]
  2. B. Ortac, A. Hideur, T. Chartier, M. Brunel, C. �?zkul, and F. Sanchez, �??90-fs stretched-pulse ytterbium-doped double-clad fiber laser,�?? Opt. Lett. 28, 1305-1307 (2003).
    [CrossRef] [PubMed]
  3. F. �?. Ilday, J. R. Buckley, H. Lim, F. W. Wise, and W. G. Clark, �??Generation of 50-fs, 5-nJ pulses at 1.03 µm from a wave-breaking-free fiber laser,�?? Opt. Lett. 28, 1365-1367 (2003).
    [CrossRef] [PubMed]
  4. F. �?. Ilday, J. R. Buckley, W. G. Clark, F. W. Wise, �??Self-similar evolution of parabolic pulses in a laser,�?? Phys. Rev. Lett. 92, 3902-3905 (2004).
    [CrossRef]
  5. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, �??Analytic theory of additive pulse and Kerr lens mode locking,�?? IEEE J. Quantum Electron. 28, 2086-2096 (1992).
    [CrossRef]
  6. T. Brabec, Ch. Spielmann, and F. Krausz, �??Mode locking in solitary lasers,�?? Opt. Lett. 16, 1961-1963 (1991).
    [CrossRef] [PubMed]
  7. H. Lim, F. �?. Ilday, and F. W. Wise, �??Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control,�?? Opt. Express 10, 1497-1502 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1497">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1497</a>
    [PubMed]
  8. H. Lim and F. W. Wise, �??Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber,�?? Opt. Express 12, 2231-2235 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2231">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2231</a>
    [CrossRef] [PubMed]
  9. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, �??All-silica single-mode fibr with photonic crystal cladding�??, Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  10. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, D. Allen, P. J. Roberts, �??Single-mode photonic bandgap guidance of light in air,�?? Science 285, 1537-1539 (1999).
    [CrossRef] [PubMed]
  11. M. E. Fermann, L.-M. Yang, M. L. Stock, M. J. Andrejco, �??Environmentally stable Kerr-type mode-locked erbium fiber laser producing 360-fs pulses,�?? Opt. Lett., 19, 43-46 (1994).
    [CrossRef] [PubMed]
  12. D. J. Jones, L. E. Nelson, H. A. Haus, and E. P. Ippen, �??Diode-pumped environmentally stable stretched-pulse fiber laser ,�?? IEEE J. Selected Topics in Quantum Electron. 3, 1076-1079 (1997).
    [CrossRef]
  13. T. F. Carruthers, I. N. Duling, M. L. Dennis, �??Active-passive modelocking in a single-polarization erbium fiber laser,�?? Eelctron. Lett. 30, 1051-1053 (1994).
    [CrossRef]
  14. K. Saitoh and M. Koshiba, �??Photonic bandgap fibers with high birefringence,�?? IEEE Photon. Technol. Lett. 14, 1291-1293 (2002).
    [CrossRef]
  15. G. Bouwmans, F. Luan, J. C. Knight, P. St. J. Russell, L. Farr, B. J. Mangan, and H. Sabert, �??Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength,�?? Opt. Express 11, 1613-1620 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1613">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1613</a>
    [CrossRef] [PubMed]
  16. X. Chen, M. Li, N. Venkataraman, M. T. Gallagher, W. A. Wood, A. M. Crowley, J. P. Carberry, L. A. Zenteno, and K. W. Koch, �??Highly birefringent hollow-core photonic bandgap fiber,�?? Opt. Express 12, 3888-3893 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3888">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3888</a>
    [CrossRef] [PubMed]
  17. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, �??77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,�?? Opt. Lett. 18, 1080-1082 (1993).
    [CrossRef] [PubMed]

Eelctron. Lett. (1)

T. F. Carruthers, I. N. Duling, M. L. Dennis, �??Active-passive modelocking in a single-polarization erbium fiber laser,�?? Eelctron. Lett. 30, 1051-1053 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, �??Analytic theory of additive pulse and Kerr lens mode locking,�?? IEEE J. Quantum Electron. 28, 2086-2096 (1992).
[CrossRef]

IEEE J. Selected Topics in Quantum Elect (1)

D. J. Jones, L. E. Nelson, H. A. Haus, and E. P. Ippen, �??Diode-pumped environmentally stable stretched-pulse fiber laser ,�?? IEEE J. Selected Topics in Quantum Electron. 3, 1076-1079 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Saitoh and M. Koshiba, �??Photonic bandgap fibers with high birefringence,�?? IEEE Photon. Technol. Lett. 14, 1291-1293 (2002).
[CrossRef]

Opt. Express (4)

Opt. Lett. (7)

Phys. Rev. Lett. (1)

F. �?. Ilday, J. R. Buckley, W. G. Clark, F. W. Wise, �??Self-similar evolution of parabolic pulses in a laser,�?? Phys. Rev. Lett. 92, 3902-3905 (2004).
[CrossRef]

Science (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, D. Allen, P. J. Roberts, �??Single-mode photonic bandgap guidance of light in air,�?? Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental configuration. FR, Faraday rotator, AOM, acousto-optical modulator, and WDM, wavelength-division multiplexer.

Fig. 2.
Fig. 2.

Left, dispersion (dashed) and attenuation (solid) spectra of the PBF (data supplied by Blazephotonics, Ltd). Right, the measured birefringence of the 3-m PBF.

Fig. 3.
Fig. 3.

Interferometric autocorrelation of a dechirped pulse from output 1, and the zero-phase Fourier transform of the measured power spectrum (gray line). Inset, pulse train.

Fig. 4.
Fig. 4.

Spectra of output 1 on logarithmic and linear scales, and of output 2, 3 on linear scales.

Metrics