Abstract

Two protocols of optical sensing realized with the same photonic-crystal fiber are compared. In the first protocol, diode-laser radiation is delivered to a sample through the central core of a dual-cladding photonic-crystal fiber with a diameter of a few micrometers, while the large-diameter fiber cladding serves to collect the fluorescent response from the sample and to guide it to a detector in the backward direction. In the second scheme, liquid sample is collected by a microcapillary array in the fiber cladding and is interrogated by laser radiation guided in the fiber modes. For sample fluids with refractive indices exceeding the refractive index of the fiber material, fluid channels in photonic-crystal fibers can guide laser light by total internal reflection, providing an 80% overlap of interrogating radiation with sample fluid.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. St.J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  2. T. M. Monro, D. J. Richardson, and P. J. Bennett, �??Developing holey fibres for evanescent field devices�??, Electron. Lett. 35, 1188-1189 (1999).
    [CrossRef]
  3. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, �??Sensing with microstructured optical fibres,�?? Meas. Sci. Technol. 12, 854-858 (2001).
    [CrossRef]
  4. Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, �??Evanescent-wave gas sensing using microstructure fiber,�?? Opt. Eng. 41, 8-9 (2002).
    [CrossRef]
  5. Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, �??Design and modeling of a photonic crystal fiber gas sensor,�?? Appl. Opt. 42, 3509-3515 (2003).
    [CrossRef] [PubMed]
  6. G. Pickrell, W. Peng, and A. Wang, �??Random-hole optical fiber evanescent-wave gas sensing,�?? Opt. Lett. 29, 1476- 1478 (2004).
    [CrossRef] [PubMed]
  7. J.B. Jensen, L.H. Pedersen, P.E. Hoiby, L.B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, �??Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,�?? Opt. Lett. 29, 1974-1976 (2004).
    [CrossRef] [PubMed]
  8. M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker Jr., W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. St. J. Russell, �??Enhanced two-photon biosensing with double-clad photonic crystal fibers,�?? Opt. Lett. 28, 1224-1226 (2003).
    [CrossRef] [PubMed]
  9. B. J. Eggleton, C. Kerbage, P. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698</a>
    [CrossRef] [PubMed]
  10. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-4087 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4080">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4080</a>
    [CrossRef] [PubMed]
  11. A.B. Fedotov, S.O. Konorov, V.P. Mitrokhin, E.E. Serebryannikov, and A.M. Zheltikov, �??Coherent anti-Stokes Raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber,�?? Phys. Rev. A 70, 045802 (2004).
    [CrossRef]
  12. S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, and A. M. Zheltikov, �??Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre,�?? J. Phys. D: Appl. Phys. 36, 1375-1381 (2003).
    [CrossRef]
  13. J. D. Shephard, J. D. C. Jones, D. P. Hand, G. Bouwmans, J. C. Knight, P. S. J. Russell, and B. J. Mangan, "High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers," Opt. Express 12, 717-723 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-717">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-717</a>
    [CrossRef] [PubMed]
  14. S. O. Konorov, A. B. Fedotov, V. P. Mitrokhin, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, M. Scalora, and A. M. Zheltikov, "Laser Ablation of Dental Tissues with Picosecond Pulses of 1.06-µm Radiation Transmitted through a Hollow-Core Photonic-Crystal Fiber," Appl. Opt. 43, 2251-2256 (2004).
    [CrossRef] [PubMed]
  15. D. Akimov, M. Schmitt, R. Maksimenka, K. Dukel�??skii, Y. Kondrat�??ev, A. Khokhlov, V. Shevandin, W. Kiefer, and A. M. Zheltikov, �??Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,�?? Appl. Phys. B 77, 299-305 (2003).
    [CrossRef]
  16. G.A.J.Besselink, P. Vulto, R.G.H.Lammertink, S.Schlautmann, A. van den Berg, W. Olthuis, G.H.M.Engbers, and R.B.M.Schasfoort, �??Electroosmotic guiding of sample flows in a laminar flow chamber,�?? Electrophoresis 25, 3705- 3711 (2004).
    [CrossRef] [PubMed]
  17. P. Mach, M. Dolinski, K.W. Baldwin, J.A. Rogers, C. Kerbage, R.S. Windeler, and B.J. Eggleton, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002).
    [CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

D. Akimov, M. Schmitt, R. Maksimenka, K. Dukel�??skii, Y. Kondrat�??ev, A. Khokhlov, V. Shevandin, W. Kiefer, and A. M. Zheltikov, �??Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,�?? Appl. Phys. B 77, 299-305 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

P. Mach, M. Dolinski, K.W. Baldwin, J.A. Rogers, C. Kerbage, R.S. Windeler, and B.J. Eggleton, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002).
[CrossRef]

Electron. Lett. (1)

T. M. Monro, D. J. Richardson, and P. J. Bennett, �??Developing holey fibres for evanescent field devices�??, Electron. Lett. 35, 1188-1189 (1999).
[CrossRef]

Electrophoresis (1)

G.A.J.Besselink, P. Vulto, R.G.H.Lammertink, S.Schlautmann, A. van den Berg, W. Olthuis, G.H.M.Engbers, and R.B.M.Schasfoort, �??Electroosmotic guiding of sample flows in a laminar flow chamber,�?? Electrophoresis 25, 3705- 3711 (2004).
[CrossRef] [PubMed]

J. Phys. D: Appl. Phys. (1)

S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, and A. M. Zheltikov, �??Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre,�?? J. Phys. D: Appl. Phys. 36, 1375-1381 (2003).
[CrossRef]

Meas. Sci. Technol. (1)

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, �??Sensing with microstructured optical fibres,�?? Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Opt. Eng. (1)

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, �??Evanescent-wave gas sensing using microstructure fiber,�?? Opt. Eng. 41, 8-9 (2002).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. A (1)

A.B. Fedotov, S.O. Konorov, V.P. Mitrokhin, E.E. Serebryannikov, and A.M. Zheltikov, �??Coherent anti-Stokes Raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber,�?? Phys. Rev. A 70, 045802 (2004).
[CrossRef]

Science (1)

P. St.J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Cross-section views of photonic-crystal fibers made of (a, b) fused silica and (c, d) soft glasses.

Fig. 2.
Fig. 2.

Two protocols of optical sensing with a photonic crystal fiber. (a) Diode-laser radiation is delivered to a sample through the central core of the fiber, while the fiber cladding serves to collect the luminescent response from the sample and to guide it to a detector. (b) Liquid sample is collected by the microcapillary array in the PCF cladding and is probed by the field of PCF modes.

Fig. 3.
Fig. 3.

Fluorescence spectra of thiacarbocyanine dye in DMSO measured with a PCF shown in Fig. 1b using the first (open circles) and second (filled squares) protocols of optical sensing. The dashed curve shows the spectrum of the same solution in a standard cell. The residual signal related to pump radiation transmitted through the set of filters is seen at 532 nm. Inset 1 presents an end-face image of a PCF sensor filled with thiacarbocyanine dye in DMSO, fluorescing under the action of 532-nm pump. A typical spatial intensity profile of this fluorescence radiation from PCF holes is shown by filled circles connected by the dashed line in inset 2. The solid line in this plot represents the field intensity profile calculated for the fundamental mode guided in the same PCF channel filled with fluid.

Metrics