Abstract

The paper presents an analysis of thermo-optic phase shifters in silicon-on-insulator (SOI) waveguide structures. It gives recommendations to provide high tuning characteristics at minimum power requirements. Then, this analysis is applied to the description of a novel type of reconfigurable optical add/drop multiplexer (ROADM) utilizing multi-reflector (MR) beam expanders and thermo-optic tuning in SOI structures. It is intended for use in high dense wavelength-division-multiplexing (HDWDM) flexible fiber-optic networks having multi-hundreds wavelength channels and advanced ITU grids (12.5 GHz, 25 GHz, 50 GHz).

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G. T. Reed and A. P. Knights, Silicon Photonics (Wiley, 2004).
    [CrossRef]
  2. Shyh-Lin Tsao, Jiang-H. Tien, and Chun-Wei Tsai, �??Simulations on an SOI Grating-Based Optical Add/Drop Multiplexer,�?? IEEE J. of Sel. Top. in Quantum Electron. 8, 1277-1284 (2002).
    [CrossRef]
  3. P. Dainesi, A. Küng, M. Chabloz, A. Lagos, Ph. Flückiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, �??CMOS Compatible Fully Integrated Mach�??Zehnder Interferometer in SOI Technology,�?? IEEE Photon. Technol. Lett. 12, 660-662 (2000).
    [CrossRef]
  4. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, �??Nanophotonic Waveguides in Silicon-on-Insulator Fabricated With CMOS Technology,�?? J. Lightwave Technol. 23, 401-412 (2005).
    [CrossRef]
  5. G. K. Ho, R. Abdolvand, and F. Ayazi, �??Through-Support-Coupled Micromechanical Filter Array�??, 17th IEEE Int. Conf. on MEMS, 769-772 (2004).
  6. G. Cocorullo, F. G. Della Corte, M. Iodice, I. Rendina, and P. M. Sarro, �??A Temperature All-Silicon Micro-Sensor Based on the Thermo-optic Effect,�?? IEEE Trans. on Electron Devices 44, 766-774 (1997).
  7. M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, �??Sub-µs Switching Time in Silicon-on-Insulator Mach�??Zehnder Thermooptic Switch,�?? IEEE Photon. Technol. Lett. 16, 2039-2041 (2004).
    [CrossRef]
  8. M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, �??Submicrosecond Submilliwatt Silicon-on-Insulator Thermooptic Switch,�?? IEEE Photon. Technol. Lett. 16, 2514-2516 (2004).
    [CrossRef]
  9. A.V. Tsarev, "Tunable optical filters,�?? United States Patent No. US20040247221 A1, December 9 (2004).
  10. A.V. Tsarev, "Beam-expanding device,�?? United States Patent No. 6,836,601, December 28 (2004).
  11. A.V. Tsarev. �??Optical beam expander,�?? Russian Federation Patent No. 2183337, Bulletin No. 16, June 10 (2002).
  12. FEMLAB 3.0 by Comsol AB, Sweden, trial license (2004).
  13. R. L. Espinola, M.-C. Tsai, J. T. Yardley, and R. M. Osgood, Jr., �??Fast and Low-Power Thermooptic Switch on Thin Silicon-on-Insulator,�?? IEEE Photon. Technol. Lett. 15, 1366-1368 (2003).
    [CrossRef]
  14. U. Fischer, T. Zinke, B. Schuppert and K. Petermann, �??Single-mode optical switches based on SOI waveguides with large cross-section,�?? Electron. Letters 30, 406-408 (1994).
    [CrossRef]
  15. OptiFDTD 3.0 by Optiwave Corporation, Canada/USA, trial license (2003).
  16. H. Yoda, K. Shiraishi, Y. Hiratani, and O. Hanaizumi, �??a-Si:H/SiO2 multilayer films fabricated by radio-frequency magnetron sputtering for optical filters,�?? Appl. Opt. 43, 3548-3554 (2004).
    [CrossRef] [PubMed]
  17. G. Cocorullo, F.G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, �??Amorphous Silicon-Based Guided-Wave Passive and Active Devices for Silicon Integrated Optoelectronics,�?? IEEE J. of Sel. Top. In Quantum Electron. 4, 997-1002 (1998).
    [CrossRef]

17th IEEE Int. Conf. on MEMS 2004 (1)

G. K. Ho, R. Abdolvand, and F. Ayazi, �??Through-Support-Coupled Micromechanical Filter Array�??, 17th IEEE Int. Conf. on MEMS, 769-772 (2004).

Appl. Opt. (1)

Electron. Letters (1)

U. Fischer, T. Zinke, B. Schuppert and K. Petermann, �??Single-mode optical switches based on SOI waveguides with large cross-section,�?? Electron. Letters 30, 406-408 (1994).
[CrossRef]

IEEE J. of Sel. Top. in Quantum Electron (1)

Shyh-Lin Tsao, Jiang-H. Tien, and Chun-Wei Tsai, �??Simulations on an SOI Grating-Based Optical Add/Drop Multiplexer,�?? IEEE J. of Sel. Top. in Quantum Electron. 8, 1277-1284 (2002).
[CrossRef]

G. Cocorullo, F.G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, �??Amorphous Silicon-Based Guided-Wave Passive and Active Devices for Silicon Integrated Optoelectronics,�?? IEEE J. of Sel. Top. In Quantum Electron. 4, 997-1002 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

R. L. Espinola, M.-C. Tsai, J. T. Yardley, and R. M. Osgood, Jr., �??Fast and Low-Power Thermooptic Switch on Thin Silicon-on-Insulator,�?? IEEE Photon. Technol. Lett. 15, 1366-1368 (2003).
[CrossRef]

P. Dainesi, A. Küng, M. Chabloz, A. Lagos, Ph. Flückiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, �??CMOS Compatible Fully Integrated Mach�??Zehnder Interferometer in SOI Technology,�?? IEEE Photon. Technol. Lett. 12, 660-662 (2000).
[CrossRef]

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, �??Sub-µs Switching Time in Silicon-on-Insulator Mach�??Zehnder Thermooptic Switch,�?? IEEE Photon. Technol. Lett. 16, 2039-2041 (2004).
[CrossRef]

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, �??Submicrosecond Submilliwatt Silicon-on-Insulator Thermooptic Switch,�?? IEEE Photon. Technol. Lett. 16, 2514-2516 (2004).
[CrossRef]

IEEE Trans. on Electron Devices (1)

G. Cocorullo, F. G. Della Corte, M. Iodice, I. Rendina, and P. M. Sarro, �??A Temperature All-Silicon Micro-Sensor Based on the Thermo-optic Effect,�?? IEEE Trans. on Electron Devices 44, 766-774 (1997).

J. Lightwave Technol. (1)

Other (6)

OptiFDTD 3.0 by Optiwave Corporation, Canada/USA, trial license (2003).

G. T. Reed and A. P. Knights, Silicon Photonics (Wiley, 2004).
[CrossRef]

A.V. Tsarev, "Tunable optical filters,�?? United States Patent No. US20040247221 A1, December 9 (2004).

A.V. Tsarev, "Beam-expanding device,�?? United States Patent No. 6,836,601, December 28 (2004).

A.V. Tsarev. �??Optical beam expander,�?? Russian Federation Patent No. 2183337, Bulletin No. 16, June 10 (2002).

FEMLAB 3.0 by Comsol AB, Sweden, trial license (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the SOI waveguide cross section.

Fig. 2.
Fig. 2.

(a) Thermal distribution at heater temperature of 100 °C and (b) effective refractive index change versus heater temperature for various distance H of the heater in structures of series 1.

Fig. 3.
Fig. 3.

(a) Pπ and cut-off frequency, (b) dneff /dT and fcut-off /Pπ ratio, versus the waveguide rib width.

Fig. 4.
Fig. 4.

Schematic diagram of the proposed type of MR-ROADM.

Fig. 5.
Fig. 5.

(a) Design of MR-demultiplexer and (b) its frequency response simulated by 2D FDTD.

Fig. 6.
Fig. 6.

(a) Reflector coefficients apodization for in, drop and through beam expanders and (b) simulated frequency response of 25 GHz ROADM.

Tables (3)

Tables Icon

Table 1. Waveguide geometric dimensions, thermo-optic coefficient, switching power and cut-off frequency (TE).

Tables Icon

Table 2. Waveguide geometric dimensions, thermo-optic coefficient, switching power and cut-off frequency (TM).

Tables Icon

Table 3. Parameters of typical MR-ROADM on SOI platform.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P π = λ k Si O 2 ( d n eff d T ) 1 [ W ( 2 t Si O 2 ) + k Si k Si O 2 t · h L ]
f cut off = ( P π π λ ρ C Si O 2 A ) ( d n eff d T )
A = ( 2 k Si K Si O 2 t · h + W ) ( h + R + H )

Metrics