Abstract

A fully 3-dimensional finite element model has been developed that simulates the internal temperature distribution of short-length high-power fiber lasers. We have validated the numerical model by building a short, cladding-pumped, Er-Yb-codoped fiber laser and measuring the core temperature during laser operation. A dual-end-pumped, actively cooled, fiber laser has generated >11 W CW output power at 1535 nm from only 11.9 cm of active fiber. Simulations indicate power-scaling possibilities with improved fiber and cooling designs.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Y. Wang, �??Thermal effects in kilowatt fiber lasers,�?? IEEE Photon. Tech. Lett. 16, 63-65 (2004).
    [CrossRef]
  2. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, �??Ytterbium-doped large-core fibre laser with 1 Kw of continuous-wave output power,�?? Electron. Lett. 40, 470- 471 (2004).
    [CrossRef]
  3. P. K. Cheo and G. G. King, �??Clad-pumped Yb:Er codoped fiber lasers,�?? IEEE Photon. Tech. Lett. 13, 188- 190 (2001).
    [CrossRef]
  4. J. Nilsson, S. Alam, J. A. Alvarez-Chavez, P. W. Turner, W.A. Clarkson, and A. B. Grudinin, �??High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber lasers,�?? IEEE J. Quantum Electron. 39, 987-994 (2003).
    [CrossRef]
  5. J. K Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, �??A 103 W erbium-ytterbium co-doped large-core fiber laser,�?? Opt. Commun. 227, 159-163 (2003).
    [CrossRef]
  6. C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, �??Low-noise narrow-linewidth fiber laser at 1550 nm,�?? J. Lightwave Tech. 22, 57-62 (2004).
    [CrossRef]
  7. L. Li, M. M. Morrell, T. Qiu, V. L. Temyanko, A. Schülzgen, A. Mafi, D. Kouznetsov, J. V. Moloney, T. Luo, S. Jiang, and N. Peyghambarian, �??Short cladding-pumped Er/Yb phosphate fiber laser with 1.5 W output power,�?? Appl. Phys. Lett. 85, 2721-2723 (2004).
    [CrossRef]
  8. T. Qiu, L. Li, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, �??Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,�?? IEEE Photon. Technol. Lett. 16, 2592-2594 (2004).
    [CrossRef]
  9. D. C. Hanna, M. J. McCarthy, and P. J. Suni, �??Thermal considerations in longitudinally pumped fibre and miniature bulk lasers,�?? in Fiber laser sources and amplifiers, M. J. F. Digonnet, eds., Proc. SPIE 1171, 160-166 (1989).
  10. L. Zenteno, �??High-power double-clad fiber lasers,�?? J. Lightwave Tech. 11, 1435-1446 (1993).
    [CrossRef]
  11. D. C. Brown and H. J. Hoffman, �??Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,�?? IEEE J. Quantum Electron. 37, 207-217 (2001).
    [CrossRef]
  12. J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. Peschel, V. Guyenot, A. Tünnermann, �??Thermal-optical properties of air-clad photonic crystal fiber lasers in high power operation,�?? Opt. Express 11, 2982-2990 (2003).
    [CrossRef] [PubMed]
  13. Y. Huo and P. K. Cheo, �??Thermomechanical properties of high-power and high-energy Yb-doped silica fiber lasers,�?? IEEE Photon. Technol. Lett. 16, 759-761 (2004).
    [CrossRef]
  14. Finite element software ANSYS 6.1, <a href=�??http://www.ansys.com/�??>http://www.ansys.com/</a>.
  15. M. D. Shinn, E. A. Sibley, M. G. Drexhage, and R. N. Brown, �??Optical transitions of Er3+ ions in fluorozirconate glass,�?? Phys. Rev. B. 27, 6635-6648 (1983).
    [CrossRef]
  16. H. Berthou and C. K. Jörgensen, �??Optical-fiber temperature sensor based on upconversion-excited fluorescence,�?? Opt. Lett. 15, 1100-1102 (1990).
    [CrossRef] [PubMed]
  17. J. P. Holman, Heat Transfer, (McGraw-Hill Book Company, New York, 1986), Appendix A.
  18. S. Jiang, M. Myers, and N. Peyghambarian, �??Er3+ doped phosphate glasses and lasers,�?? J. Non-Cryst Solids 239, 143-148 (1998).
    [CrossRef]

Appl. Phys. Lett.

L. Li, M. M. Morrell, T. Qiu, V. L. Temyanko, A. Schülzgen, A. Mafi, D. Kouznetsov, J. V. Moloney, T. Luo, S. Jiang, and N. Peyghambarian, �??Short cladding-pumped Er/Yb phosphate fiber laser with 1.5 W output power,�?? Appl. Phys. Lett. 85, 2721-2723 (2004).
[CrossRef]

Electron. Lett.

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, �??Ytterbium-doped large-core fibre laser with 1 Kw of continuous-wave output power,�?? Electron. Lett. 40, 470- 471 (2004).
[CrossRef]

IEEE J. Quantum Electron.

J. Nilsson, S. Alam, J. A. Alvarez-Chavez, P. W. Turner, W.A. Clarkson, and A. B. Grudinin, �??High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber lasers,�?? IEEE J. Quantum Electron. 39, 987-994 (2003).
[CrossRef]

D. C. Brown and H. J. Hoffman, �??Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,�?? IEEE J. Quantum Electron. 37, 207-217 (2001).
[CrossRef]

IEEE Photon. Tech. Lett.

P. K. Cheo and G. G. King, �??Clad-pumped Yb:Er codoped fiber lasers,�?? IEEE Photon. Tech. Lett. 13, 188- 190 (2001).
[CrossRef]

Y. Wang, �??Thermal effects in kilowatt fiber lasers,�?? IEEE Photon. Tech. Lett. 16, 63-65 (2004).
[CrossRef]

IEEE Photon. Technol.

Y. Huo and P. K. Cheo, �??Thermomechanical properties of high-power and high-energy Yb-doped silica fiber lasers,�?? IEEE Photon. Technol. Lett. 16, 759-761 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Qiu, L. Li, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, �??Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,�?? IEEE Photon. Technol. Lett. 16, 2592-2594 (2004).
[CrossRef]

J. Lightwave Tech.

C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, �??Low-noise narrow-linewidth fiber laser at 1550 nm,�?? J. Lightwave Tech. 22, 57-62 (2004).
[CrossRef]

L. Zenteno, �??High-power double-clad fiber lasers,�?? J. Lightwave Tech. 11, 1435-1446 (1993).
[CrossRef]

J. Non-Cryst Solids

S. Jiang, M. Myers, and N. Peyghambarian, �??Er3+ doped phosphate glasses and lasers,�?? J. Non-Cryst Solids 239, 143-148 (1998).
[CrossRef]

Opt. Commun.

J. K Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, �??A 103 W erbium-ytterbium co-doped large-core fiber laser,�?? Opt. Commun. 227, 159-163 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B.

M. D. Shinn, E. A. Sibley, M. G. Drexhage, and R. N. Brown, �??Optical transitions of Er3+ ions in fluorozirconate glass,�?? Phys. Rev. B. 27, 6635-6648 (1983).
[CrossRef]

Proc. SPIE

D. C. Hanna, M. J. McCarthy, and P. J. Suni, �??Thermal considerations in longitudinally pumped fibre and miniature bulk lasers,�?? in Fiber laser sources and amplifiers, M. J. F. Digonnet, eds., Proc. SPIE 1171, 160-166 (1989).

Other

J. P. Holman, Heat Transfer, (McGraw-Hill Book Company, New York, 1986), Appendix A.

Finite element software ANSYS 6.1, <a href=�??http://www.ansys.com/�??>http://www.ansys.com/</a>.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The drawings of a TEC-cooled short-length EYDFL assembly: (a) the side view (fiber size not in proportion); (b) an enlarged end view with FEM meshes. The air gap in (b) (light blue) is not shown in (a) and the inset of (b) is a microscopic photo of the real fiber in tubing. The drawing (b) shows that the cladding (magenta) has a D-shape and the core (red) is in close proximity to heat sink-the glass tubing (green).

Fig. 2.
Fig. 2.

(a) The signal vs. absorbed pump power plot of a 10.2-cm long, single-end pumped EYDFL, the squares are measured data and the red line is a linear fit; (b) normalized spectra of Er3+ green UPF at different pump levels.

Fig. 3.
Fig. 3.

Left Y-axis: the effective pump absorption coefficient α at different pump powers, the dots are the measured data and the line is fitted with formula α=αSCT+α°ABS/(1+P/PS). Right Y-axis: the highest core temperature at the pump end of a single-end-pumped EYDFL, the diamonds are measured data and the curve is the 3-D FEM simulated result.

Fig. 4.
Fig. 4.

The signal vs. launched pump power plot of the dual-end pumped EYDFL.

Fig. 5.
Fig. 5.

Temperature distributions in short TEC-cooled dual-end-pumped (except the magenta) EYDFLs: (a) core temperature along the fiber length; (b) temperature profile across the fiber facet at the stronger pump end. Green: simulations for the experimental configuration; magenta: single-end-pumped EYDFL; red: centered-core fiber; navy: double-cladding fiber in contact with Al heatsink.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I H I s = C T exp ( Δ E HS K B T )
[ k ( r , T ) T ( r ) ] = q ( r )
P ( Z ) = P 0 η c e α Z
α = α SCT + α ABS = α SCT + α ABS 0 / ( 1 + P P S )
d Q ( Z ) = η HEAT α ABS P ( Z ) d Z
q ( r ) = q ( Z ) = 1 A d Q d Z
P ( Z ) = P 0 L η CL e α Z + P 0 R η CR e α ( L Z )

Metrics