Abstract

We demonstrate a novel technique for instituting complex and arbitrary shaped micron-scale domain patterns in LiNbO3 at room temperature. Fabrication of continuous domains as narrow as 2 µm across and hexagonal patterns of the same order accompanied by real time visualization of the poling process are presented.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G.A. Magel, M.M. Fejer, R.L. Byer �??Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3,�?? Appl. Phys. Lett. 56, 108 �?? 110 (1990)
    [CrossRef]
  2. L.E. Myres, R.C. Eckardt, M.M. Fejer, R.L. Byre, W.R. Bosenberg, J.W. Pierce, �??Quasi-phase matched optical parametric oscillators in bulk periodically poled LiNbO3,�?? J. Opt .Soc. Am. B 12, 2102 �?? 2116 (1995)
    [CrossRef]
  3. M. Houé, P.D. Townsend, �??An introduction to methods of periodic poling for second harmonic generation,�?? J. of Phys. D: Appl. Phys 28, 1747 �?? 1763 (1995)
    [CrossRef]
  4. M. Yamada, �??Elelctrically induced Bragg-diffraction grating composed of periodically inverted domains in lithium niobate crystals and its application devices,�?? Rev. of Sci. Instr. 71, 4010 �?? 4016 (2000)
    [CrossRef]
  5. E.J. Lim, M.M. Fejer, F.L. Byer, W.J. Kozlovsky, �??Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide,�?? Electron. Lett. 25, Issue 11, 731 �??- 732 (1989)
    [CrossRef]
  6. M.M. Fejer, G.A. Magel, D.H. Jundt, R.L. Byer, �??Quasi-Phase-Matched Second Harmonic generation: Tuning and tolerances,�?? IEEE J. Quantum Electron. 28, No. 11, 2631 �??- 2654 (1992)
    [CrossRef]
  7. N.G.R. Broderick, G.W. Ross, H.L. Offerhaus, D.J. Richardson, D.C. Hanna, �??Hexagonally poled lithium niobate: A two dimensional nonlinear photonic crystal,�?? Phys. Rev. Lett. 84, No. 19, 4345 �??- 4384 (2000)
    [CrossRef] [PubMed]
  8. K.S. Zhang, T. Coudreau, M. Martinelli, A. Maitre, C. Fabre, �??Generation of bright squeezed light at 10.6 µm using cascaded nonlinearities in a triply resonant cw periodically poled lithium niobate optical parametric oscillator,�?? Phys. Rev. A 64 (2001)
    [CrossRef]
  9. M. Yamada, N. Nada, M. Saitoh, K. Watanabe, �??First order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second harmonic generation,�?? Appl. Phys. Lett. 62, 435 �?? 436 (1992)
    [CrossRef]
  10. R.G. Batchko, V.Y. Shur, M.M. Fejer, R.L. Byer, �??Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,�?? Appl. Phys. Lett. 75, 1673 �?? 1675 (1999)
    [CrossRef]
  11. V.Y. Shur, E.L. Rumyantsev, E.V. Nikolaeva, E.I. Shishkin, E.V. Fursov, R.G. Batchko, L.A. Eyres, M.M. Fejer, R.L. Byer, �??Nanoscale backswitched domain patterning in lithium niobate,�?? Appl. Phys. Lett. 76, 143 �?? 145 (2000)
    [CrossRef]
  12. V.S. Ilchenko, A.A. Savchenkov, A.B. Matsko, L. Maleko, �??Nonlinear Optics and Crystalline Whispering Gallery Mode Cavities,�?? Phys. Rev. Lett. 92, No. 4043903 (2004)
    [CrossRef] [PubMed]
  13. H.A. Eggert, B. Hecking, K. Buse, �??Electrical fixing in near-stoichiometric lithium niobate crystals,�?? Opt. Lett. 29, No. 21, 2476 �?? 2478 (2004)
    [CrossRef] [PubMed]
  14. K. Terabe, M. Nakamura, S. Takekawa, K. Kitamura, S. Higuchi, Y. Gotoh, Y. Cho, �??Microscale to nanoscale ferroelectric domain and surface engineering of a near-stoichiometric LiNbO3 crystal,�?? Appl. Phys. Lett. 82, No. 3, 433 �?? 435 (2003)
    [CrossRef]
  15. G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, M. Molotskii, �??Submicron ferroelectric domain structures tailored by high voltage scanning probe microscopy,�?? Appl. Phys. Lett 82, No. 1, 103 �?? 105 (2003)
    [CrossRef]
  16. B.J. Rodriquez, R.J. Nemanich, A. Kingon, A. Gruverman, S.V. Kalinin, K. Terabe, X.Y. Liu, K. Kitamura, �??Domain growth kinetics in lithium niobate signel crystals studied by piezoresponse force microscopy,�?? Appl. Phys. Lett. 86, 012906 (2005)
    [CrossRef]
  17. Y. Cho, K. Fujimoto, Y. Hiranaga, Y. Wagatsuma, A. Onoe, K. Terabe, K. Kitamura, �??Tbit/inch2 ferroelectric data storage based on scanning nonlinear dielectric microscopy,�?? Appl. Phys. Lett. 81, No. 23, 4401 �?? 4403 (2002)
    [CrossRef]
  18. K. Fujimoto, Y. Cho, �??High-speed switching of nanoscale ferroelectric domains in congruent single-crystal LiTaO3,�?? Appl. Phys. Lett. 83, 5265 �?? 5267 (2003)
    [CrossRef]
  19. S. De Nicola, P. Ferraro, A. Finizo, S. Grilli, G. Coppola, M. Iodice, P. De Natale, M. Chiarini, �??Surface topography of microstructures in lithium niobate by digital holographic microscopy,�?? Meas. Sci. Tech. 15, 961 �?? 968 (2004)
    [CrossRef]
  20. V.S. Ilchenko, A.B. Matsko, A.A. Savchenkov, L. Maleki, �??Low threshold parametric nonlinear optics with quasi-phase-matched whispering-gallery modes,�?? J. Opt .Soc. Am. B 20, No. 6, 1304 �?? 1308 (2003)
    [CrossRef]
  21. M. Mohageg, A.B. Matsko, A.A. Savchenkov, D. Strekalov, V.S. Ilchenko, L. Maleki, �??Reconfigurable Optical Filter,�?? Electron. Lett. 41, 356-358 (2005)
    [CrossRef]
  22. H. Ishizuki, T. Taira, S. Kurimura, J.H. Ro, M. Cha, �??Periodic poling in 3-mm-thick MgO:LiNbO3 Crystals,�?? Japanese J. of Appl. Phys. 42, 108 �?? 110 (2003)
    [CrossRef]
  23. M. Müller, E. Soergal, K. Buse, �??Visualization of ferroelectric domains with coherent light,�?? Opt. Lett. 28, 2515 �?? 2517 (2003)
    [CrossRef] [PubMed]
  24. D.H. Jundt, �??Temperature-dependant Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,�?? Opt. Lett. 22, 1553 �?? 1555 (1997)
    [CrossRef]

Appl. Phys. Lett. (9)

G.A. Magel, M.M. Fejer, R.L. Byer �??Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3,�?? Appl. Phys. Lett. 56, 108 �?? 110 (1990)
[CrossRef]

M. Yamada, N. Nada, M. Saitoh, K. Watanabe, �??First order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second harmonic generation,�?? Appl. Phys. Lett. 62, 435 �?? 436 (1992)
[CrossRef]

R.G. Batchko, V.Y. Shur, M.M. Fejer, R.L. Byer, �??Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,�?? Appl. Phys. Lett. 75, 1673 �?? 1675 (1999)
[CrossRef]

V.Y. Shur, E.L. Rumyantsev, E.V. Nikolaeva, E.I. Shishkin, E.V. Fursov, R.G. Batchko, L.A. Eyres, M.M. Fejer, R.L. Byer, �??Nanoscale backswitched domain patterning in lithium niobate,�?? Appl. Phys. Lett. 76, 143 �?? 145 (2000)
[CrossRef]

K. Terabe, M. Nakamura, S. Takekawa, K. Kitamura, S. Higuchi, Y. Gotoh, Y. Cho, �??Microscale to nanoscale ferroelectric domain and surface engineering of a near-stoichiometric LiNbO3 crystal,�?? Appl. Phys. Lett. 82, No. 3, 433 �?? 435 (2003)
[CrossRef]

G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, M. Molotskii, �??Submicron ferroelectric domain structures tailored by high voltage scanning probe microscopy,�?? Appl. Phys. Lett 82, No. 1, 103 �?? 105 (2003)
[CrossRef]

B.J. Rodriquez, R.J. Nemanich, A. Kingon, A. Gruverman, S.V. Kalinin, K. Terabe, X.Y. Liu, K. Kitamura, �??Domain growth kinetics in lithium niobate signel crystals studied by piezoresponse force microscopy,�?? Appl. Phys. Lett. 86, 012906 (2005)
[CrossRef]

Y. Cho, K. Fujimoto, Y. Hiranaga, Y. Wagatsuma, A. Onoe, K. Terabe, K. Kitamura, �??Tbit/inch2 ferroelectric data storage based on scanning nonlinear dielectric microscopy,�?? Appl. Phys. Lett. 81, No. 23, 4401 �?? 4403 (2002)
[CrossRef]

K. Fujimoto, Y. Cho, �??High-speed switching of nanoscale ferroelectric domains in congruent single-crystal LiTaO3,�?? Appl. Phys. Lett. 83, 5265 �?? 5267 (2003)
[CrossRef]

Electron. Lett. (2)

E.J. Lim, M.M. Fejer, F.L. Byer, W.J. Kozlovsky, �??Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide,�?? Electron. Lett. 25, Issue 11, 731 �??- 732 (1989)
[CrossRef]

M. Mohageg, A.B. Matsko, A.A. Savchenkov, D. Strekalov, V.S. Ilchenko, L. Maleki, �??Reconfigurable Optical Filter,�?? Electron. Lett. 41, 356-358 (2005)
[CrossRef]

IEEE J. Quantum Electron. (1)

M.M. Fejer, G.A. Magel, D.H. Jundt, R.L. Byer, �??Quasi-Phase-Matched Second Harmonic generation: Tuning and tolerances,�?? IEEE J. Quantum Electron. 28, No. 11, 2631 �??- 2654 (1992)
[CrossRef]

J. of Phys. D: Appl. Phys (1)

M. Houé, P.D. Townsend, �??An introduction to methods of periodic poling for second harmonic generation,�?? J. of Phys. D: Appl. Phys 28, 1747 �?? 1763 (1995)
[CrossRef]

J. Opt. Soc. Am. B (2)

Japanese J. of Appl. Phys. (1)

H. Ishizuki, T. Taira, S. Kurimura, J.H. Ro, M. Cha, �??Periodic poling in 3-mm-thick MgO:LiNbO3 Crystals,�?? Japanese J. of Appl. Phys. 42, 108 �?? 110 (2003)
[CrossRef]

Meas. Sci. Tech. (1)

S. De Nicola, P. Ferraro, A. Finizo, S. Grilli, G. Coppola, M. Iodice, P. De Natale, M. Chiarini, �??Surface topography of microstructures in lithium niobate by digital holographic microscopy,�?? Meas. Sci. Tech. 15, 961 �?? 968 (2004)
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (1)

K.S. Zhang, T. Coudreau, M. Martinelli, A. Maitre, C. Fabre, �??Generation of bright squeezed light at 10.6 µm using cascaded nonlinearities in a triply resonant cw periodically poled lithium niobate optical parametric oscillator,�?? Phys. Rev. A 64 (2001)
[CrossRef]

Phys. Rev. Lett. (2)

N.G.R. Broderick, G.W. Ross, H.L. Offerhaus, D.J. Richardson, D.C. Hanna, �??Hexagonally poled lithium niobate: A two dimensional nonlinear photonic crystal,�?? Phys. Rev. Lett. 84, No. 19, 4345 �??- 4384 (2000)
[CrossRef] [PubMed]

V.S. Ilchenko, A.A. Savchenkov, A.B. Matsko, L. Maleko, �??Nonlinear Optics and Crystalline Whispering Gallery Mode Cavities,�?? Phys. Rev. Lett. 92, No. 4043903 (2004)
[CrossRef] [PubMed]

Rev. of Sci. Instr. (1)

M. Yamada, �??Elelctrically induced Bragg-diffraction grating composed of periodically inverted domains in lithium niobate crystals and its application devices,�?? Rev. of Sci. Instr. 71, 4010 �?? 4016 (2000)
[CrossRef]

Supplementary Material (3)

» Media 1: MOV (747 KB)     
» Media 2: MOV (2231 KB)     
» Media 3: MOV (2499 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

A diagram of the calligraphic poling machine. The tungsten pen is free to move across the surface of the crystal. When voltage is applied, domain reversal takes place locally under the position of the pen. The arrows represent the direction of the polarization for local regions on the crystal.

Fig. 2.
Fig. 2.

Poling dynamics of a 200 µm thick specimen of congruent LiNbO3. 3 kV of bias was applied through a 1 µm tungsten pen and the surface area of the resultant domain structure was recorded. This experiment was repeated nine times at various locations on the crystal to obtain the error bars.

Fig. 3.
Fig. 3.

Poling dynamics in 200 µm thick stoichiometric LiNbO3. (a) Increasing bias voltage applied to different regions of the crystal for 5 s results in domain structures of increasing size. (b) Increasing the time a given bias voltage is applied will result in domains of increasing size.

Fig. 4.
Fig. 4.

Ferroelectric work-hardening in 120 µm thick congruent LiNbO3. Domains are flipped, erased, and re-poled in successive iterations. The measured surface areas of the domains grow dramatically through several iterations.

Fig. 5.
Fig. 5.

(a) A ring shaped poling pattern 2 µm edge to edge that follows the circumference of a disk shaped crystal. (b) Detail of a section of the ring. These images appear orange because of the brass substrate used as the bottom electrode.

Fig. 6.
Fig. 6.

(a) A hexagonally shaped domain pattern in stoichiometric LiNbO3 24 µm edge to edge visualized ex situ. The large black arrow is the shadow of the pen used for writing and visualizing the domain. The sample was 110 µm thick with a radius of 6 mm. (b) A video of a linear chain of such hexagons written on congruent LiNbO3 visualized in situ. This sample was 80 µm thick with a radius of 7.5 mm. (2.4 MB).

Fig. 7.
Fig. 7.

Modification to the calligraphic poling machine to allow for edge-poling on a polished crystal. A hydrophobic, transparent, and insulating oil prevents sparks from charge build up on the edge of the crystal.

Fig. 8.
Fig. 8.

Demonstration of poling at the edge of a disk shaped crystal with a diameter of 7 mm. Domains in the shape of radial lines 13 µm across (and 13 µm between) are draws with a 1 µm radius tungsten tip at 1.8 kV bias in real time. Two to three passes per line are made to ensure uniform domain thickness. Between stripes, the image goes out of focus because of the oil drop on top of the crystal (2.2 MB).

Fig. 9.
Fig. 9.

Two linear domain structures 15 µm across are divided into sections by ‘erasing’ domain structures with the pen. The bias voltage between the pen and the substrate causes the previously +z poled regions to flip back to −z polarization (2.5 MB).

Metrics