Abstract

Abstract A bandpass optical filter, based on fiber Bragg gratings, is presented in which the bandwidth of a Gaussian spectrum can be continuously adjusted, whilst maintaining near zero group delay slope over the filter bandwidth. The device is also wavelength tunable and the spectral profile is selectable by appropriate grating design. This novel device is employed in a 2R-regenerator, enabling data rate reconfiguration and wavelength conversion, with negligible phase distortion. It will find application wherever a dispersionless reconfigurable bandpass optical filter is required.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Sadot and E. Boimovich, �??Tunable Optical Filters for Dense WDM Networks,�?? IEEE Communications Magazine Dec. 50-55 (1998)
    [CrossRef]
  2. S. Jin, R.P. Espindola, H. Mavoori, T.A. Strasser and J.J. DeMarco, �??Magnetically programmable fibre Bragg gratings,�?? Electron. Lett. 34, 2158-2159 (1998)
    [CrossRef]
  3. Y.P. Wang, Y.J. Rao, Zeng-Ling Ran, T. Zhu, and A.Z. Hu, �??A Novel Tunable Gain Equalizer Based on a Long-Period Fiber Grating Written by High-Frequency CO2 Laser Pulses,�?? IEEE Photon. Technol. Lett. 15, 251-253 (2003)
    [CrossRef]
  4. P.C. Hill and B.J. Eggleton, �??Strain gradient chirp of fiber Bragg gratings,�?? Electron. Lett. 30, 1172�??1174, (1994)
    [CrossRef]
  5. T. Komukai, T. Inui, and M. Nakazawa, �??Very low group delay ripple characteristics of fiber Bragg gratings with chirp induced by an S-curve bending technique,�?? Electron. Lett. 37, 449�??451, (2001)
    [CrossRef]
  6. M.M. Ohn, A.T. Alavie, R. Maaskant, M.G. Xu, F. Bilodeau, and K.O. Hill, �??Dispersion variable fiber grating using a piezoelectric stack,�?? Electron. Lett. 32, 2000�??2001, (1996)
    [CrossRef]
  7. M. Pacheco, A. Medez, L.A. Zenteni, and F. Mendoz-Santoyo, �??Chirping optical fiber Bragg gratings using tapered-thickness piezoelectric ceramic,�?? Electron. Lett. 34, 2348�??2350, (1998)
    [CrossRef]
  8. J. Lauzon, S. Thibault, J. Martin, and F. Ouellette, �??Implementation and characterization of fiber Bragg gratings linearly chirped by temperature gradient,�?? Opt. Lett. 19, 2027�??2029, (1994)
    [CrossRef] [PubMed]
  9. A. Mugnier, E. Goyat, P. Lesueur, D. Pureur �??Fibre Bragg Grating dispersion compensator with Wide Tuning Range around Zero for 40 Gbit/s WDM Systems,�?? ECOC We4-P032 (2004)
  10. B.J. Eggleton, A. Ahuja, P.S. Westbrook, J.A. Rogers, P. Kuo, T.N. Nielsen, and B. Mikkelsen, �??Integrated Tunable Fiber Gratings for Dispersion Management in High-Bit Rate Systems,�?? J. Lightwave Technol. 18, 1418-1432 (2000)
    [CrossRef]
  11. B.J. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J.A. Rogers, P.S. Westbrook, T.N. Nielsen, S. Stulz, and K. Dreyer, �??Tunable Dispersion Compensation in a 160-Gb/s TDM System by a Voltage Controlled Chirped Fiber Bragg Grating,�?? IEEE Photon. Technol. Lett. 12, 1022-1024 (2000)
    [CrossRef]
  12. O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, �??Optical Regeneration at 40 Gb/s and Beyond,�?? J. Lightwave Technol. 21, 2779-2790 (2003)
    [CrossRef]
  13. E.A. Golovchenko, C.R. Menyuk, G.M Carter and P.V. Mamyshev, �??Analysis of optical pulse train generation through filtering of an externally phase-modulated signal from a cw laser,�?? Electron. Lett. 31, 1364-1366 (1995)
    [CrossRef]
  14. J.A. Bolger, P. Hu, J.T. Mok, J.L. Blows, B.J. Eggleton, �??Talbot self-imaging and cross-phase modulation for generation of tunable high repetition rate pulse trains,�?? to appear on-line Opt. Commun. 16th Feb (2005)
  15. K. Naganuma, G. Lenz, and E.P. Ippen, �??Variable Bandwidth Birefringent Filter for Tunable Femtosecond Lasers,�?? IEEE J. Quantum Electron. 28, 2142-2150 (1992)
    [CrossRef]
  16. L.R. Chen, S. D. Benjamin, P.W.E. Smith, and J.E. Sipe, �??Ultrashort Pulse Reflection from Fiber Gratings: A Numerical Investigation,�?? J. Lightwave Technol. 15, 1503-1512 (1997)
    [CrossRef]
  17. D. Mahgerefteh, A.M. Benzoni, P.S. Westbrook, K.S. Feder, P.I. Reyes, P. Steinvurzel, B. J. Eggleton, R.G. Ernst, L.A. Reith, and D.M. Gill, �??DMRZ: A Directly Modulated 10-Gb/s RZ Source for Ultralong-Haul WDM Systems,�?? IEEE Photon. Technol. Lett. 14, 546-548 (2002)
    [CrossRef]
  18. M. Ibsen, M.K. Durkin, M.J. Cole and R.I. Laming, �??Optimised square passband fibre Bragg grating filter with in-band group delay response,�?? Electron. Lett. 34, 800-802 (1998)
    [CrossRef]
  19. G. Lenz, G. Nykolak, B.J. Eggleton, �??Waveguide grating routers for dispersionless filtering in WDM system at channel rate of 10Gbit/s,�?? Electron. Lett. 34, 1683-1684 AUG 20 1998
    [CrossRef]
  20. G Lenz, B.J. Eggleton, C.R. Giles, C.K. Madsen, R.E. Slusher, �??Dispersive properties of optical filters for WDM systems,�?? IEEE J. Quantum Electron. 34, 1390-1402 AUG 1998
    [CrossRef]
  21. R. Kashyap, �??Fibre Bragg Gratings,�?? (Academic, New York, 1999)
  22. K. Hinton, �??Metrics for dispersion ripple in optical systems,�?? Opt. Fiber Tech. 10, 50�??72 (2004)
    [CrossRef]
  23. P.V. Mamyshev, �??All-optical data regeneration based on self-phase modulation effect,�?? ECOC 475-476 (1998)
  24. B.E. Olsson and D.J. Blumenthal, �??Pulse Restoration by Filtering of Self-Phase Modulation Broadened Optical Spectrum,�?? J. Lightwave Technol. 20, 1113-1117 (2002)
    [CrossRef]
  25. T.H. Her, G. Raybon, and C. Headley, �??Optimization of Pulse Regeneration at 40 Gb/s Based on Spectral Filtering of Self-Phase Modulation in Fiber,�?? IEEE Photon. Technol. Lett. 16, 200-202 (2004)
    [CrossRef]
  26. M. Rochette, J.N. Kutz, J.L. Blows, D. Moss, J.T. Mok, and B.J. Eggleton, �??Bit error ratio improvement with 2R optical regenerators,�?? IEEE Photon. Technol. Lett. 17, 908-910 (2005)
    [CrossRef]

ECOC 2004

A. Mugnier, E. Goyat, P. Lesueur, D. Pureur �??Fibre Bragg Grating dispersion compensator with Wide Tuning Range around Zero for 40 Gbit/s WDM Systems,�?? ECOC We4-P032 (2004)

ECOC1998

P.V. Mamyshev, �??All-optical data regeneration based on self-phase modulation effect,�?? ECOC 475-476 (1998)

Electron. Lett.

M. Ibsen, M.K. Durkin, M.J. Cole and R.I. Laming, �??Optimised square passband fibre Bragg grating filter with in-band group delay response,�?? Electron. Lett. 34, 800-802 (1998)
[CrossRef]

G. Lenz, G. Nykolak, B.J. Eggleton, �??Waveguide grating routers for dispersionless filtering in WDM system at channel rate of 10Gbit/s,�?? Electron. Lett. 34, 1683-1684 AUG 20 1998
[CrossRef]

P.C. Hill and B.J. Eggleton, �??Strain gradient chirp of fiber Bragg gratings,�?? Electron. Lett. 30, 1172�??1174, (1994)
[CrossRef]

T. Komukai, T. Inui, and M. Nakazawa, �??Very low group delay ripple characteristics of fiber Bragg gratings with chirp induced by an S-curve bending technique,�?? Electron. Lett. 37, 449�??451, (2001)
[CrossRef]

M.M. Ohn, A.T. Alavie, R. Maaskant, M.G. Xu, F. Bilodeau, and K.O. Hill, �??Dispersion variable fiber grating using a piezoelectric stack,�?? Electron. Lett. 32, 2000�??2001, (1996)
[CrossRef]

M. Pacheco, A. Medez, L.A. Zenteni, and F. Mendoz-Santoyo, �??Chirping optical fiber Bragg gratings using tapered-thickness piezoelectric ceramic,�?? Electron. Lett. 34, 2348�??2350, (1998)
[CrossRef]

E.A. Golovchenko, C.R. Menyuk, G.M Carter and P.V. Mamyshev, �??Analysis of optical pulse train generation through filtering of an externally phase-modulated signal from a cw laser,�?? Electron. Lett. 31, 1364-1366 (1995)
[CrossRef]

S. Jin, R.P. Espindola, H. Mavoori, T.A. Strasser and J.J. DeMarco, �??Magnetically programmable fibre Bragg gratings,�?? Electron. Lett. 34, 2158-2159 (1998)
[CrossRef]

IEEE J. Quantum Electron.

K. Naganuma, G. Lenz, and E.P. Ippen, �??Variable Bandwidth Birefringent Filter for Tunable Femtosecond Lasers,�?? IEEE J. Quantum Electron. 28, 2142-2150 (1992)
[CrossRef]

G Lenz, B.J. Eggleton, C.R. Giles, C.K. Madsen, R.E. Slusher, �??Dispersive properties of optical filters for WDM systems,�?? IEEE J. Quantum Electron. 34, 1390-1402 AUG 1998
[CrossRef]

IEEE Photon. Technol. Lett.

D. Mahgerefteh, A.M. Benzoni, P.S. Westbrook, K.S. Feder, P.I. Reyes, P. Steinvurzel, B. J. Eggleton, R.G. Ernst, L.A. Reith, and D.M. Gill, �??DMRZ: A Directly Modulated 10-Gb/s RZ Source for Ultralong-Haul WDM Systems,�?? IEEE Photon. Technol. Lett. 14, 546-548 (2002)
[CrossRef]

Y.P. Wang, Y.J. Rao, Zeng-Ling Ran, T. Zhu, and A.Z. Hu, �??A Novel Tunable Gain Equalizer Based on a Long-Period Fiber Grating Written by High-Frequency CO2 Laser Pulses,�?? IEEE Photon. Technol. Lett. 15, 251-253 (2003)
[CrossRef]

B.J. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J.A. Rogers, P.S. Westbrook, T.N. Nielsen, S. Stulz, and K. Dreyer, �??Tunable Dispersion Compensation in a 160-Gb/s TDM System by a Voltage Controlled Chirped Fiber Bragg Grating,�?? IEEE Photon. Technol. Lett. 12, 1022-1024 (2000)
[CrossRef]

T.H. Her, G. Raybon, and C. Headley, �??Optimization of Pulse Regeneration at 40 Gb/s Based on Spectral Filtering of Self-Phase Modulation in Fiber,�?? IEEE Photon. Technol. Lett. 16, 200-202 (2004)
[CrossRef]

M. Rochette, J.N. Kutz, J.L. Blows, D. Moss, J.T. Mok, and B.J. Eggleton, �??Bit error ratio improvement with 2R optical regenerators,�?? IEEE Photon. Technol. Lett. 17, 908-910 (2005)
[CrossRef]

J. Lightwave Technol.

Opt. Fiber Tech.

K. Hinton, �??Metrics for dispersion ripple in optical systems,�?? Opt. Fiber Tech. 10, 50�??72 (2004)
[CrossRef]

Opt. Lett.

Other

D. Sadot and E. Boimovich, �??Tunable Optical Filters for Dense WDM Networks,�?? IEEE Communications Magazine Dec. 50-55 (1998)
[CrossRef]

R. Kashyap, �??Fibre Bragg Gratings,�?? (Academic, New York, 1999)

J.A. Bolger, P. Hu, J.T. Mok, J.L. Blows, B.J. Eggleton, �??Talbot self-imaging and cross-phase modulation for generation of tunable high repetition rate pulse trains,�?? to appear on-line Opt. Commun. 16th Feb (2005)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Setup of the dispersionless, adjustable bandwidth, bandpass optical, filter (ABF). Both FBGs are used in reflection via a four port circulator and probed, such that the spectral profiles are multiplied together but their equal and opposite chirps cancel. The chirp of each FBG is aligned in the same sense to the temperature gradient, such that increasing the gradient leads to a broadening of the spectral bandwidth. A translation stage tensions the FBGs to provide wavelength tuning.

Fig. 2.
Fig. 2.

Set-up showing the equipment used to create the linear, adjustable temperature gradient. Also shown are the fiber clamps and the stage used for tensioning the fibers. During operation, there is mineral wool insulation around the connecting rod and on top of the heat source.

Fig. 3.
Fig. 3.

Typical spectra of FBG 1 a) (in this case a Gaussian) and FBG 2 b). A Gaussian fit is applied to the Gaussian grating and a Super-Gaussian of order 8 is applied to the flat top.

Fig 4.
Fig 4.

The filter spectrum of the ABF, for each of four temperature differences between the hot source and cold sink. A Gaussian fit for each gradient shows that the spectral shape is maintained as the bandwidth increases.

Fig. 5.
Fig. 5.

ABF Bandwidth as a function of temperature difference. The bandwidth increases linearly with temperature difference (temperature gradient).

Fig. 6.
Fig. 6.

Spectra and group delay for no temperature gradient (left) and maximum gradient (right). The top plots show the transmission of the ABF, fitted with Gaussians. The middle level plots show the measured group delay curves for each individual grating in reflection. The lower level plots shows the combined measured group delay of the ABF, for each of the two temperature difference extremes.

Fig. 7.
Fig. 7.

An ultra-short pulse is sent into the bandpass filter resulting in the following output pulses for the case of no gradient (left) and maximum gradient (right). The top level, plots a) and d), shows the hypothetical case of ideal Gaussian spectrum and dispersion exactly zero. In the middle level, plots b) and e), the measured GDR is added to the simulation giving rise to temporal sidelobes. In the lowest level, plots c) and f), the measured transmission spectrum is added, changing the evolution only slightly.

Fig. 8.
Fig. 8.

The effect of quadratic dispersion on the output pulses of the ABF, with FWHM=860 pm is shown. In the plot a), the dispersion is 0 ps/nm. In plot b), the dispersion is 5 ps/nm and in plot c), the dispersion has been increased to 10 ps/nm.

Fig. 9.
Fig. 9.

The effect of cubic dispersion on the pulses with a FWHM=860 pm is shown. Plot b) shows the case of D3=-15.2 ps/nm2, which approximates the cubic component extracted from the measurement. Note the appearance of sidelobes as also seen in the simulation using the measured GDR (Fig 7e). In the other plots the amount of quadratic dispersion is increased and decreased by factors of two as labeled.

Fig. 10.
Fig. 10.

The transfer functions of an optical regenerator based on self-phase modulation and the ABF are shown. The dots show the experimental results and the solid curves the theory. The insets show the autocorrelation traces for the ABF output pulses. In plot a), the bandwidth is adjusted to match the input pulse duration, Δτ=8.3 ps, yielding a typical regenerator transfer function. In plot b), the gradient is increased to broaden the bandwidth to match the smaller pulse duration format, Δτ=4.2 ps.

Metrics