Abstract

We report a long term stabilized 4th order rational harmonic mode-locked (RHML) erbium doped fiber laser operating at 40Gb/s. The cavity length drift induced laser instability is overcomed by constructing a modified regenerative type feedback loop to actively adjust the modulation frequency of the 10GHz driving signal. The 4th RHML fiber laser is tested to be highly stable against environmental perturbations.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. Kawanishi, �??Ultra-high speed optical time-division-multiplexed transmission technology based on optical signal processing,�?? IEEE J. Quantum Electron. 34, 2064-2079, (1998)
    [CrossRef]
  2. M. Horowitz, C.R. Menyuk, T.F. Carruthers and I.N. Dulling III, �??Theoretical and experimental study of harmonic mode-locked fiber lasers for optical communication systems,�?? J. Lightwave Technol. 18, 1565- 1574, (2000)
    [CrossRef]
  3. J. Li, P.A. Andrekson, and B. Bakhshi, �??Direct generation of subpicosecond chirp-free pulses at 10GHz from a nonpolarization actively mode-locked fiber ring laser,�?? IEEE Photon. Technol. Lett. 12, 1150-1152, (2000)
    [CrossRef]
  4. E. Yoshida, M. Nakazawa, �??80 similar to 200GHz erbium doped fiber laser using a rational harmonic mode-locking technique,�?? Electron. Lett. 32, 1370-1372, (1996)
    [CrossRef]
  5. G. Zhu, H. Chen, and N.K. Dutta, �??Time domain analysis of a rational harmonic mode-locked ring fiber laser,�?? J. Appl. Phys. 90, 2143-2147, (2001)
    [CrossRef]
  6. L.E. Nelson, D.J. Jones, K. Tamura and E.P. Ippen, �??Ultrashort pulse fiber ring lasers,�?? Appl. Phys. B 65, 277-294, (1997)
    [CrossRef]
  7. X. Shan, D. Cleland, and A. Ellis, �??Stabilizing erbium fiber soliton laser with pulse phase locking,�?? Electron. Lett. 28, 182-184, (1992)
    [CrossRef]
  8. M. Nakazawa, E. Yoshida, and Y. Kimura, �??Ultrastable harmonically and regeneratively mode-locked polarization maintaining erbium fiber ring laser,�?? Electron. Lett. 30, 1603-1605, (1994)
    [CrossRef]
  9. G. Zhu, Q. Wang, H. Chen, H. Dong and N.K. Dutta , �??High-quality optical pulse train generation a 80Gb/s using a modified regenerative type mode-locked fiber laser,�?? IEEE J. Quantum Electron. 40, 721- 725, (2004)
    [CrossRef]

Appl. Phys. B (1)

L.E. Nelson, D.J. Jones, K. Tamura and E.P. Ippen, �??Ultrashort pulse fiber ring lasers,�?? Appl. Phys. B 65, 277-294, (1997)
[CrossRef]

Electron. Lett. (3)

X. Shan, D. Cleland, and A. Ellis, �??Stabilizing erbium fiber soliton laser with pulse phase locking,�?? Electron. Lett. 28, 182-184, (1992)
[CrossRef]

M. Nakazawa, E. Yoshida, and Y. Kimura, �??Ultrastable harmonically and regeneratively mode-locked polarization maintaining erbium fiber ring laser,�?? Electron. Lett. 30, 1603-1605, (1994)
[CrossRef]

E. Yoshida, M. Nakazawa, �??80 similar to 200GHz erbium doped fiber laser using a rational harmonic mode-locking technique,�?? Electron. Lett. 32, 1370-1372, (1996)
[CrossRef]

IEEE J. Quantum Electron. (2)

G. Zhu, Q. Wang, H. Chen, H. Dong and N.K. Dutta , �??High-quality optical pulse train generation a 80Gb/s using a modified regenerative type mode-locked fiber laser,�?? IEEE J. Quantum Electron. 40, 721- 725, (2004)
[CrossRef]

S. Kawanishi, �??Ultra-high speed optical time-division-multiplexed transmission technology based on optical signal processing,�?? IEEE J. Quantum Electron. 34, 2064-2079, (1998)
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Li, P.A. Andrekson, and B. Bakhshi, �??Direct generation of subpicosecond chirp-free pulses at 10GHz from a nonpolarization actively mode-locked fiber ring laser,�?? IEEE Photon. Technol. Lett. 12, 1150-1152, (2000)
[CrossRef]

J. Appl. Phys. (1)

G. Zhu, H. Chen, and N.K. Dutta, �??Time domain analysis of a rational harmonic mode-locked ring fiber laser,�?? J. Appl. Phys. 90, 2143-2147, (2001)
[CrossRef]

J. Lightwave Technol. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Numerical simulation results for 4th order RHML. The modulator is biased at its transmission peak and is driven by a 10GHz sine wave with an amplitude equals Vπ. The cavity dispersion is zero and the cavity filter width is set to be 3nm. Using the parameters described above, the simulated pulse train is shown in the left (cavity length drift: 0ps) and right (cavity length drift: 0.5ps).

Fig. 2.
Fig. 2.

Schematics of the proposed regenerative type RHML fiber laser. Te laser cavity is composed of a Fabry-Perot (F.P.) band-pass filer, an isolator, a segment of erbium dope fiber (E.D.F.), a polarization controller (P.C.), a LiNbO3 intensity modulator, and a 90/10 coupler. When driven by a 10GHz VCO, the laser is capable to generate a 4th RHML pulse train at 40Gb/s. The feedback control unit is shown in the dashed box, where another LiNbO3 intensity modulator is used to serve as a 30GHz gate (see text below) to covert the 40GHz component of the produced 40Gb/s pulse train down to 10GHz.

Fig. 3.
Fig. 3.

Characteristics of the generated 40Gb/s pulse train. Left: autocorrelation trace. Right: eye diagram.

Fig. 4.
Fig. 4.

Measurement on the long term stability of the modified regenerative type RHML. The solid dots represent the amplitude of the auto-correlation signal of the mode-locked pulse train. The two insets show the auto-correlation trace of the pulse train at the beginning and the end of the measurement period.

Fig. 5.
Fig. 5.

Illustration on the thermal stability of the modified regenerative type RHML. The two figures in the top line (a) and (b) show the auto-correlation traces right before and 30 seconds after the heater is turned on for the case of regular RHML (no feedback control). The two figures in the bottom line (c) and (d) show the auto-correlation traces right before and 15 minuets after the heater is turned on for the case of regeneratively feedback controlled RHML.

Metrics